Presentation is loading. Please wait.

Presentation is loading. Please wait.

Forest ecosystems: forecasting, modeling and vulnerability Roman COROBOV Republic of Moldova.

Similar presentations


Presentation on theme: "Forest ecosystems: forecasting, modeling and vulnerability Roman COROBOV Republic of Moldova."— Presentation transcript:

1 Forest ecosystems: forecasting, modeling and vulnerability Roman COROBOV Republic of Moldova

2 Principal steps in the assessment of ecosystem sensitivity to climate change Historical aspect and current state Construction of ecology-phytocoenotic rows Assessment of stability and sensitivity Development of future bioclimate scenarios Ecosystem transformation in new climate

3 Forming the Moldova’s Natural Ecosystems West- European sea climate East- European continental climate Mediterranean climate Balti steppe Budjac steppe Mediterranean forest zone Subtropical steppe Xerophilic oak forest European- Asia Steppe Zone Mid-European wide-leaf zone Mid-European wide-leave forests

4 Forest areas: Southern forests Northern forest Codru Beech forests Oak-hornbeam Step 1. Natural forests - historical aspect Oaks occupy about half of all forest territory

5 Most forests were cut before the 1850s, with the lowest forest cover in 1918-1925. At present, forests occupy only about 9-10% of Moldova territory 1848 1861 1875 1893 1914 1918 1925 1965 1985 1997 Dynamic of forest fund Dynamic of forest fund

6 In the 20th century some increase of oak forests and maximal decrease of beech ones took place, along with significant increase of introducents share. 1925 1962 1985 1997 Changes in forest composition (1925-2000)

7 Step 2: Development of ecological rows as the model of natural ecosystems change in new climatic conditions Essence of the method: Today’s temporal and spatial transition from ones plant types to the others is used as an objective criterion for assessment of the directions and parameters of natural ecosystem qualitative changes in new climate Essence of the method: Today’s temporal and spatial transition from ones plant types to the others is used as an objective criterion for assessment of the directions and parameters of natural ecosystem qualitative changes in new climate

8 Ecological row of meadow ecosystems When runoff decreases When runoff increases Grass marsh Bottomland meadow Fresh and dry meadow Percentage of Moldova wetlands with different levels of ground water (m)

9 Ecological row of flood plain forest community depending on humidity conditions Increase of aridity Ash-willow stand (Saliceta cinereae) White-willow stand (Saliceta albae) White poplar stand (Populeta albae) English oak forest (Querceta roboris) Salicetum phragmitosum (australis) S. typhosum (latifoliae) S. thelipteridosum (palustris) S. caricosum (acutiformis ) Salicetum phragmitosum (australis) S. typhosum (angustifoliae ) S. caricosum (ripariae) S. rubosum (caesii) S. elytrigosum (repentis) Populetum rubosum (caesi) P. aegopodiosum (podagrariae) P. rubosum (caesii) P. convollariosum (majalis) Quercetum aegopodiosum (podagrariae) Q. sambucosum (nigrae) Q, corylosum (avelanae) Q. urticosum (dioicae) Forest type Associations

10 Ecological range Edificators Precipitation Annual temperature Suboptimum Optimum Limit Suboptim um Optimu m Limit Fagus sylvatica 600; 1300 700- 1200 500; 1400 +4; +10 +6 - +9 +3 Carpinus betulus 500; 800 600-700 400; 900 +6; +11 +8 - +10 +5 Quercus petraea 500; 900 600-800 1000; 1100 +6;+7;+1 1 +8 - +10 +5 Quercus robur 350-560600-800900+7 +8 - +10 +6 Quercus pubescens 450500-650700 +9 - +11 -+8 Co-edificators Tilia tomentosa 500550-600400+8.5 +9 - +11 +8 Fraxinus excelsior 450;800;9 00 500-700 400; 1000 +6;+7;+1 1 +8 - +10 +5 Beula pendula 600; 1200 700-1100 500; 1300 +3; +4 +5 - +8 +2;-10;- 11 Ulmus carpinifolia 400; 600 450-550700+7 +8 - +10 +11 Acer pseudoplatanus 700800-1100 500;600; 1200 +4;+8;+9 +5 -+- 7 +10 In baseline climate outside of optimum conditions are : Quercus pubescens - by temperature, Fagus sylvatica - by humidity. Quercus robur has most wide ecological amplitude by humidity factor. Step 3: Assessment of forest stability & sensitivity by ecological demands of dominant species to temperature and precipitation

11 Disposition of key forest species in their area Fagus sylvaticaCarpinus betulusQuercus petraea Quercus roburQuercus pubescens Acer pseudoplatanus Sorbus torminalis Hedera helix Acer pseudoplatanus Tilia tomentosa Tilia platyphyllos Malus sylvestris Pyrus pyrester Ulmus carpinifolia Fraxinus excelsior Acer campestris Acer tatarica Viburnum lantana Cerasus avium Tilia cordata Sorbus domestica Carpinus orientalis Cotinus coggygria Ligustrum vulgare Rhamnus tinctoria Crataegus pentagyna Pyrus elaeagnifolia Кодры NorthSouth South-East boundary Ecological optimum East boundary North boundary

12 Sensitivity of forest species to climatic changes To precipitation decrease Vulnerable Sustainable Fagus sylvatica Quercus petreae Carpinus betulus Acer pseudoplatanus Betula pendula Tilia tomentosa Sorbus aucuparia Padus racemosa Fagus sylvatica Quercus petreae Carpinus betulus Acer pseudoplatanus Betula pendula Tilia tomentosa Sorbus aucuparia Padus racemosa Quercus robur Quercus pubescens Tilia cordata Fraxinus excelsior Acer tatarica Carpinus orientalis Sorbus domestica Quercus robur Quercus pubescens Tilia cordata Fraxinus excelsior Acer tatarica Carpinus orientalis Sorbus domestica To temperature increase Quercus pubescens Tilia cordata Sorbus domestica Sorbus torminalis Carpinus orientalis Fraxinus excelsior Quercus pubescens Tilia cordata Sorbus domestica Sorbus torminalis Carpinus orientalis Fraxinus excelsior Sustainable

13 10 % precipitation change 6.5/7.7 % streamflow change 10 % annual temperature change 5.0/6.6 % streamflow change Statistical comparison of temperature & precipitation effects on streamflow

14 Simple and cross-correlation between monthly (left) and annual (right) underground water level and precipitation r = 0.165 r = 0.075 lag Crosscorrelations -13-8-3271217 -0,6 -0,2 0,2 0,6 1 lag Crosscorrelations -10-6-22610 -0,6 -0,2 0,2 0,6 1

15 Step 4-5: Projections of change under different climate change scenarios

16 SRES A2 based climate of forest habitats Water supply (W) Heat supply (T,  Ñ) Temperate warm (104-124) Warm (125-144) Very warm (145-164) Hot (165-184) Fresh (2.0  0.6) 2e2e2f2f-- Dry (0.6  -0.8) 1e1e1f1f1g1g1h1h Very dry (-0.8  -2.2) 0e0f0g0h0h T = T =  Ti, where Ti - mean monthly air temperatures in a month with positive temperatures W = P/T – 0.0286 T, where P – precipitation sum for months with positive air temperatures 2010-2039 2040-2069 2070-2099 1969-1990

17 Remaining uncertainties (IPCC, 2007):  although not completely quantified, many species can achieve rapid large-scale migrations, under a considerable range of lagged responses;  future landscapes will differ substantially from past climate change situations and landscape fragmentation creates major obstacles to migration;  migration is moderated by such processes as competition, soil formation, land use, herbivores, pathogens;  tree species do not only respond to a changing climate by migration, but also by local adaptation, including genetic one.


Download ppt "Forest ecosystems: forecasting, modeling and vulnerability Roman COROBOV Republic of Moldova."

Similar presentations


Ads by Google