Download presentation
Presentation is loading. Please wait.
Published byChristiana Brooks Modified over 9 years ago
1
1 Acid-Base Balance Seminar No. 11
2
2 Parameters of acid base balance Measured in arterial blood pH = 7.40 ± 0.04 = 7.36 – 7.44 pCO 2 = 4.8 – 5.8 kPa supporting data: pO 2, tHb, sO 2, HbO 2, COHb, MetHb Calculated [HCO 3 - ] = 24 ± 3 mmol/l (from H.-H. eq.) BE = 0 ± 3 mmol/l (from S.-A. nomogram, see physilogy) BB s = 42 ± 3 mmol/l BB b = 48 ± 3 mmol/l
3
3 Q. 1
4
4 Buffer bases in (arterial) plasma Buffer basemmol/l HCO 3 - Protein-His HPO 4 2- ---------- Total 24 17* 1 ------------- 42 * Molarity of negative charge binding sites for H +
5
5 Q. 2
6
6 A. 2 BB s = 42 ± 3 mmol/l BB b = 48 ± 3 mmol/l hemoglobin in erythrocytes increases BB b by 6-8 mmol/l
7
7 Q. 3
8
8 Abr.NameReference values sO 2 tHb COHb MetHb HbA 1c Oxygen parameters and hemoglobin derivatives
9
9 Abr.NameReference values sO 2 saturation of Hb by oxygen 94 – 99 % tHbtotal Hb 2.15 – 2.65 mmol/l (tetramer) 120-175 g/l (diff. males × females) COHbcarbonylHb1-2 % (nonsmokers) MetHbmethemoglobin0.5 – 1.5 % HbA 1c glycated Hb2.8 - 4 % Oxygen parameters and hemoglobin derivatives Tissue hypoxia of any origin leads to lactic acidosis
10
10 Q. 4
11
11 A. 4 7.4 = 6.1 + log [HCO 3 - ] / 0.22 × 5.3 1.3 = log [HCO 3 - ] / 1.2 10 1.3 = [HCO 3 - ] / 1.2 20 = [HCO 3 - ] / 1.2 [HCO 3 - ] = 24 mmol/l
12
12 Four types of acid-base disorders pH = 6.1 + log Changes in [HCO 3 - ] metabolic acidosis metabolic alkalosis Changes in pCO 2 respiratory alkalosis respiratory acidosis
13
13 Maintanance of constant pH in body System / OrganWhat is altered?How quickly? Buffers in ECF/ICFpHsec / min LungspCO 2 hours Liverway of NH 3 detoxicationdays Kidney NH 4 + / H 2 PO 4 - excretion HCO 3 - resorption days
14
14 Responses to acute change compensation correction
15
15 Q. 6
16
16 A. 6 FeaturePlasmaICF Main cation Main anion Protein content Main buffer base Na + Cl - HCO 3 - K + HPO 4 2- HPO 4 2-
17
17 Metabolic acidosis is the most common condition Metabolic alkalosis is the most dangerous condition
18
18 Q. 8
19
19 Na + Cl - HCO 3 - AG K+K+ normal status hyperchloremic MAC normochloremic MAC
20
20 Na + Cl - HCO 3 - AG K+K+ Cl - HCO 3 - ↓ AG no change Cl - no change HCO 3 - ↓ AG normal status hyperchloremic MAC normochloremic MAC See Q. 11 NaCl infusions
21
21 Q. 9
22
22 A. 9 Excessive infusions of NaCl isotonic solution lead to metabolic acidosis Blood plasma (mmol/l)Isotonic solution (mmol/l) Na + Cl - Na + Cl - 133-15097-108154 Ratio ~ 1 : 0.7Ratio 1 : 1 Isotonic solution of NaCl has elevated concentration of Cl - compared to plasma Blood plasma is diluted by infusion solution [HCO 3 - ] decreases pCO 2 in alveolar air is the same the ratio [A - ] / [HA] in H.-H. equation decreases pH < 7.40 (acidosis)
23
23 Q. 10
24
24 Hyperchloremic MAc excessive infusions of NaCl solution the loss of HCO 3 - + Na + + water (diarrhoea, renal disorders) relative higher concentration of chlorides in plasma
25
25 Q. 11 How is AG calculated?
26
26 AG Na + Cl - HCO 3 - AG K+K+ AG composition = HPO 4 2- + Prot - + SO 4 2- + OA AG calculation = [Na + ] + [K + ] - [Cl - ] - [HCO 3 - ]
27
27 A. 11 MAc with increased AG Hypoxia of tissues – insufficient supply of O 2 anaerobic glycolysis: glucose 2 lactate elevated AG – lactoacidosis Starvation, diabetes TAG FA (β-oxidation in liver) acetyl-CoA (excess, over the capacity of CAC) KB production elevated AG - ketoacidosis Renal insufficiency – elevated phosphates, sulfates Various intoxications
28
28 Q. 12
29
29 A. 12 AG – normal values SID – buffer bases (mainly HCO 3 - ) – decreased compare Q. 8a)
30
30 Q. 13 Metabolic acidosis ParameterPhysiol. st.Ac. changeCompensationCorrection [HCO 3 - ]24 mmol/l N pCO 2 5.3 kPaN [A - ] / [HA]20 : 1< 20 : 1 pH7.40 ± 0.04< 7.36 Systemlungskidney Processhyperventilation HCO 3 - resorption NH 4 + / H 2 PO 4 - excr.
31
31 Q. 15 Methanol intoxication
32
32 Metabolic oxidation of methanol provides a rather strong formic acid Consequences: formate in plasma elevated AG acidosis excess of NADH lactoacidosis
33
33 Compare two acids ethanol acetic acid pK A = 4.75 K A = 1.8 10 -5 methanol formic acid pK A = 3.75 K A = 1.8 10 -4 K A (formic ac.) : K A (acetic ac.) = 10 : 1 formic acid is 10 stronger than acetic acid
34
34 ethylene glycol intoxication
35
35 Intoxication by ethylene glycol Consequences: oxalic acid is rather strong acid (pK A1 = 1.25, pK A2 = 4.29) oxalate in plasma elevated AG acidosis excess of NADH lactoacidosis in urine calcium oxalate concrements
36
36 Calcium oxalate is insoluble chelate Draw formula
37
37 Calcium oxalate is insoluble chelate
38
38 Why MAc occurs in anemia?
39
39 Not enough hemoglobin insufficient supply of O 2 hypoxia anaerobic glycolysis to lactate elevated AG – lactoacidosis
40
40 Q. 16
41
41 Metabolic oxidation of ethanol leads to excess of NADH acetaldehyde dehydrogenase alcohol dehydrogenase (ADH) acetaldehyde acetaldehyde hydrate acetic acid - NADH+H +
42
42 Metabolic consequences of EtOH biotransformation Ethanol ADH MEOS acetaldehyde part. soluble in membrane PL toxic efects on CNS adducts with proteins, NA, biog. amines acetate acetyl-CoA FA synthesis liver steatosis ADH the excess of NADH in cytosol is reoxidized by pyruvate to lactate lactoacidosis various products causing hangover
43
43 Q. 17
44
44 thiamine is the cofactor of aerobic decarboxylation of pyruvate thiamine deficit pyruvate cannot be converted to acetyl-CoA therefore pyruvate is hydrogenated to lactate even in aerobic conditions: glucose lactate increased plasma lactate elevated AG lactoacidosis CH 3 -CO-COOH + CoA-SH + NAD + CO 2 + CH 3 -CO-S-CoA + NADH+H + 1.Thiamin diphosphate 2.Lipoate 3.Coenzym A 4.FAD 5.NAD +
45
45 Q. 18
46
46 A. 18 calcium cations make electrostatic interactions with carboxylate anions in side chains of glutamate and aspartate (in various proteins) increased [H + ] (= decreased pH) of plasma leads to a partial cation exchange one calcium ion is liberated and replaced by two protons
47
47 Causes of metabolic alkalosis Repeated vomiting – the loss of chloride (Cl - ) anion hypochloremic alkalosis Direct administration of buffer base HCO 3 - per os: baking soda, some mineral waters intravenous infusions of sodium bicarbonate Hypoalbuminemia severe malnutrition liver damage, kidney damage
48
48 What is baking soda?
49
49 A. NaHCO 3 sodium hydrogen carbonate (sodium bicarbonate) sold in pharmacy
50
50 Q. 19 How is SID calculated?
51
51 Na + Cl - SID K+K+ SID composition = HCO 3 - + HPO 4 2- + Prot - SID corresponds to buffer bases of plasma In MAlk SID increases SID calculation = [Na + ] + [K + ] - [Cl - ]
52
52 Q. 20
53
53 Na + Cl - HCO 3 - AG K+K+ Cl - HCO 3 - ↑ AG no change Cl - no change HCO 3 - ↑ AG normal status hypochloremic MAlk normochloremic MAlk vomitinghypoalbuminemia
54
54 Q. 21 Metabolic alkalosis ParameterPhysiol. st.Ac. changeCompensationCorrection [HCO 3 - ]24 mmol/l N pCO 2 5.3 kPaN [A - ] / [HA]20 : 1> 20 : 1 pH7.40 ± 0.04> 7.44 Systemlungskidney Processhypoventilation HCO 3 - excretion
55
55 Q. 23
56
56 A. 23 pCO 2 = 5.5 kPa.......................... OK [HCO 3 - ] = 39 mmol/l.................. elevated pH = 7.6..................................... elevated status: metabolic alkalosis pCO 2 will increase during compensation (hypoventilation)
57
57 SolutionEffectExplanation NaCl KHCO 3 NH 4 Cl NaHCO 3 Na lactate Q. 25
58
58 SolutionEffectExplanation NaClacid. plasma dilution [HCO 3 - ] while pCO 2 is constant KHCO 3 alkal.direct addition of the main buffer base NH 4 Clacid. NH 4 + excreted by urine, Cl - remains in plasma [HCO 3 - ] NaHCO 3 alkal.direct addition of the main buffer base Na lactatealkal. lactate anion goes from plasma to liver (gluconeogenesis), Na + remains in plasma its pos. charge is balanced by extra HCO 3 - (similar effect like in vegetarian diet)
59
59 Q. 26 Respiratory acidosis ParameterPhysiol. st.Ac. changeCompensationCorrection [HCO 3 - ]24 mmol/l N, - pCO 2 5.3 kPa N [A - ] / [HA]20 : 1 pH7.40 ± 0.04 Systemkidneylungs Process HCO 3 - resorption NH 4 + / H 2 PO 4 - excr. hyperventilation
60
60 Q. 27 Describe the scheme on p. 5
61
61 Excess of CO 2 in the body produces more H 2 CO 3 in blood Carbonic acid in buffering reaction with proteins gives HCO 3 - ion Hydrogen carbonate ion is driven to ICF Therefore the level of HCO 3 - in ECF is normal or slightly elevated
62
62 Q. 29
63
63 A. 29 pH 7.32........................................ pCO 2 9.3 kPa............................. [HCO 3 - ] = 39 mmol/l.................. [Na + ] = 136 mmol/l......................OK [K + ] = 4.5 mmol/l.........................OK [Cl - ] = 92 mmol/l.......................... AG = 136 + 4.5 - 39 – 92 = 9.5 mmol/l....... no MAc Conclusion: compensated RAc
64
64 Q. 30 Respiratory alkalosis ParameterPhysiol. st.Ac. changeCompensationCorrection [HCO 3 - ]24 mmol/l N, - pCO 2 5.3 kPa - NN [A - ] / [HA]20 : 1 pH7.40 ± 0.04 Systemkidneylungs ProcessExcretion of HCO 3 - hypoventilation (if possible)
65
65 Combined disorders Q. 33
66
66 A. 33 pH 7. 4............................. OK pCO 2 5.13 kPa.......................OK BE 1 mmol/l............................OK HCO 3 - = 25 mmol/l....... OK Na + 140 mmol/l......................OK K + 4.6 mmol/l........................OK Cl - 89 mmol/l......................... AG = 140 + 4.6 – 25 – 89 = 30.6 mmol/l............... SID = 140 + 4.6 – 89 = 55.6 mmol/l....................... Conclusion: MAc + MAlk
67
67 Q. 34
68
68 A. 34 Q.Explanation a)MAc - lactoacidosis (alcohol) + loss of Cl - (vomiting) - MAlk b) MAc - ketoacidosis (starvation) + loss of Cl - (vomiting after overeating) - MAlk c) RAlk (stimulation of resp. centre) + MAc (salicylate – AG ) d)MAc (ketoacidosis) + RAc (heart failure – circulation insuff.)
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.