Presentation is loading. Please wait.

Presentation is loading. Please wait.

Carbon Compounds Isomers

Similar presentations


Presentation on theme: "Carbon Compounds Isomers"— Presentation transcript:

1 Carbon Compounds Isomers
Monkemeier Honors Biology

2 Carbon Skeletons The framework of biological molecules consists predominately of carbon atoms bonded to other carbon atoms or atoms of oxygen, hydrogen, nitrogen or sulfur. Carbon skeletons form the backbone of biological molecules Carbon skeletons occur in chains, branched chains or rings.

3 Four Major Types of Biological Molecules and Carbon Skeletons!
The four major types of biological molecules: carbohydrates, lipids, nucleic acids, and proteins. Carbon chains often contain hydrogen. The C-C and C- H bonds are nonpolar since carbon and hydrogen have similar electronegativities.

4 Functional Groups Functional Groups are specific groups of atoms (that are covalently bonded together) that have definite chemical properties that they retain no matter where they occur. Functional Groups attached to a “carbon – chain” molecule provide that molecule with their definite chemical properties!

5 Functional Groups

6 Carbon Skeletons and Isomers!
Isomers are compounds with the same chemical formula but different structural arrangements.

7 Structural Isomers When differences exist in in the actual structure of the carbon skeleton the compounds are structural isomers.

8 Sterioisomers These molecules have the same carbon skeleton but differ in how the groups attached to this skeleton are arranged.

9 Enantiomers A subcategory of sterioisomers that are mirror images of each other. Chiral molecules are mirror images of each other. Chiral molecules are characterized by their effect on polarized light and chiral molecules rotate to the left or right.

10 Chiral Molecules Levorotatory rotates the molecule to the left and is designated L Dextrorotatory rotates the molecule to the right and is designated D.

11 Chiral Molecules and Living Systems
Living systems tend to produce only a single enantiomer of the tow possible forms (L or D); for example, in most organisms: D – Sugars L – amino Acids

12 HOW? How do living systems build huge polymers like starch or enzymes?
Instead of building them one atom at a time, they build them one monomer at a time. Monomers are molecules that act as subunits that when put together form polymers (large macromolecules).

13 Monomers to Polymers

14 Monomers to Polymers

15 Dehydration Synthesis: Monomers to Polymers

16 Polymers back to Monomers: Hydrolysis

17 The Four Major Categories
Carbohydrates, Lipids, Proteins and nucleic acids are all built and broken down using the SAME TWO REACTIONS. Dehydration Synthesis (aka condensation) forms bonds between monomers. Hydrolysis (sometimes aka decomposition) breaks the bonds between monomers In both reactions: DO NOT FORGET THE ROLE of WATER!

18 NEXT TIME! The four major categories of macromolecules! WE LOVE AP!


Download ppt "Carbon Compounds Isomers"

Similar presentations


Ads by Google