Presentation is loading. Please wait.

Presentation is loading. Please wait.

Invertebrate Evolution

Similar presentations


Presentation on theme: "Invertebrate Evolution"— Presentation transcript:

1 Invertebrate Evolution
Chapter 18

2 Defining Animals Invertebrates Vertebrates Commonality majority
Multicellular eukaryotes Chemoheterotrophs Obtain food through ingestion Diploid (2n) organisms reproduce sexually Nonliving substances produced Facilitate movement Provide support

3 Classifying Animals ‘Body plans’ used for morphologically based phylogenetic trees Tissue organization Symmetry Embryonic development Body cavity Hypotheses only DNA discoveries maintain constant restructuring Kingdom Animalia

4 Tissue Organization 2 or 3 layers of cells
Diplo- or triploblastic Phylum Porifera excluded Gastrulation of blastula forms germ layers Endoderm = digestive tube, liver, and lungs Ectoderm = outer covering and some nervous systems Mesoderm = muscles and bone

5 Symmetry Asymmetry Radial symmetry Bilateral symmetry Most sponges
Top and bottom, but no front, back, or sides Sessile or drifts Bilateral symmetry Anterior and posterior, dorsal and ventral Most demonstrate cephalization Motile with complex movements

6 Embryonic Development
3 germ layer animals Based on fate of gastrula Deuterostomes Chordates and echinoderms Protostomes All others

7 Body Cavities Only bilateral, 3 germ layer animals
Presence or absence of a fluid filled space called a coelom Coelomates Pseudocoelomates Acoelomates Allows independent organ movement and growth Hydrostatic skeleton

8 Phylum Porifera (Sponges)
Asymmetrical, sessile, aquatic animals Suspension feeders Water pores osculum Cellular organization Choanocytes move water in Traps food in mucus Amoebocytes digest food and produce skeletal support Spicules: mineralized material Spongin: flexible protein No muscles or nerves Hermaphrodites Reproduce by budding of fragmentation Produce toxins for protection Used for antibiotics

9 Phylum Cnidaria (Cnidarians)
Radial symmetry Polyp, medusa, or both Diploblastic with inner mesoglea Creates hydrostatic skeleton Single opening to a gastrovascular cavity = sac plan Simplistic muscles and nerve net Facilitates movement Cnidocytes in tentacles to capture and immobilize prey

10 Phylum Platyhelminthes (Flatworms)
Bilateral, triploblastic, acoelomate, sac plan Planarians (free-living) Simple brain, eyespots, auricles, and branched gastrovascular cavity Live on underside of rocks in freshwater Flukes (animal parasites) Suckers and interior almost all reproductive organs Larval intermediate stage Pinch in half to reproduce Tapeworms (animal parasites) Scolex, no mouth (absorption), hemaphrodites, eggs released from end (proglottids) in feces Larval intermediate in prey species develop into adults in predators

11 Phylum Nematoda (Roundworms)
Pseudocoelomate, tube within a tube plan, separate sexes, and lateral muscles Can shed cuticle, outer covering when grows Free-living decomposers in soil (C. elegans) Parasitic Dog heartworm Mosquito vector Trichinella spiralis Uncooked pork Pinworms Hook worms hookworms heartworms pinworms Trichinella

12 Phylum Mollusca (Molluscs)
Coelomates with 3 part body plan Foot: muscular organ for locomotion, attachment, or feeding Visceral mass: contains internal organs Mantle: surrounds visceral mass and may secrete shell; cavity for gills or lungs Feed via a radula Most separate sexes, except snails Open circulatory system, blood not confined to vessels (except cephalopds) Neural ganglia connected by nerve cord Advanced sensory systems in cephalopods

13 Mollusc Classes Class Gastropoda (snails and slugs)
Head w/ eyes Only terrestrial species; no gills Class Cephalopoda (squids and octopuses) Mouth at end of foot, shell small or absent Most advanced invertebrate brain and sense organs (eyes) Siphon for steering movements Class Bivalva (scallops, oysters, and clams) Paired hinged shells Suspension feeders Mantle with gills

14 Phylum Annelida (Segmented Worms)
Segmentation Longitudinal and circular muscles Closed circulatory system Class Oligochaeta (earthworms) Hermaphroditic, exchange sperm Solid ventral nerve cord, anterior brain, and a ganglia in each segment Nephridia for excretion Unsegmented, compartmentalized digestive system Nutrients diffuse across body wall

15 Annelida Classes (Cont.)
Class Polychaeta Largest class Marine organisms Segmented appendages for mov’t or gills Live in tubes of mucus and sand Class Hirudinea (leeches) Blood-sucking Release an anesthetic and anticoagulant Consume 10X’s weight Medicinal uses

16 Phylum Arthropoda (Arthropods)
Most successful phylum (1,000,000+ species) Exoskeleton (hydrostatic earlier) Cuticle of protein and chitin for protection and joint attachment Molted with growth, eaten for nutrients Segmentation Head, thorax (fused is cephalothorax), and abdomen Sensory, protection and walking, and swimming respectively Jointed appendages Open circulatory system Gas exchange Aquatic  gills Terrestrial  spiracles Advanced sensory systems

17 Arthropd Linneages Chelicerates (arachnids) Millipedes and centipedes
First terrestrial carnivores Hollow mouth appendages; may deliver venom or toxins E.g scorpions (night), spiders (day), and ticks/mites Millipedes and centipedes Herbivores with 2 leg sets per segment Carnivores (poisonous) with 1 leg set per segment Crustaceans Insects 70+ % all known animal species Unrivaled evolutionary success Flight Waterproof cuticle Life cycle complexity

18 Class Insecta Life cycles Body plan Coloration
Complete and incomplete metamorphosis Larvae and adult with different roles Only adults can reproduce or have functional wings Food sources differ  enhances adaptability Body plan 3 parts: head, thorax, and abdomen Embryonic segments develop independently 3 pairs of legs, wings not at cost to legs Mouthparts for food sources  few limits Coloration Camouflage, mimicry, and coloration from independent development Gene regulation role

19 Phylum Echinodermata External radial symmetry as an adult, bilateral as larvae Ca2+ plates form endoskeleton Locomotion, feeding, and gas exchange via tube feet Water vascular system Mouth and stomach adaptations Capable of regeneration Deuterosomes Include sea stars, urchins, and same dollars


Download ppt "Invertebrate Evolution"

Similar presentations


Ads by Google