Download presentation
Presentation is loading. Please wait.
Published byRussell Richardson Modified over 10 years ago
1
Mission 2016: The Future of Strategic Natural Resources
2
What is Terrascope? First year learning community You will tackle big problems without simple solutions You will develop friendships and bonds that last for your time at MIT and beyond
3
Terrascope: Academic Structure 12.000: Mission 2016: Solving Complex Problems First Semester 1.016: Communicating Complex Environmental Issues: Building Solutions and Communicating Ideas Terrascope Field Experience (Spring Break) Terrascope Radio Second Semester
4
Solving Complex Problems Multidisciplinary, project-based learning experience Students work toward a solution to a deceptively simple problem related to Earth’s environment Each year’s theme is different and referred to as “Mission 20XX”, where 20XX refers to the graduation year of the class involved
5
Solving Complex Problems: Motivation To build in you the capacity to tackle “big” problems that confront society To encourage you to take charge of the learning process To show you how to do independent research, to evaluate the quality of information sources, and to synthesize different information streams
6
Solving Complex Problems: Motivation To encourage you to think about optimal solutions rather than correct solutions To help you learn to work effectively as part of a team To improve your communication skills: web site and formal oral presentation To convince you of your potential!!
7
To develop strategies for developing countries in the Pacific basin to cope with tsunami hazards and disasters. Due to the unique needs of each country, we specifically focused on developing plans for Peru and Micronesia. To develop a plan for the reconstruction of New Orleans and the management of the Mississippi River and the Gulf coast. Past Missions
8
To develop strategies to deal with the collapse of the global fisheries and the general health of the oceans To develop a plan to ensure the availability of fresh clean water for western North America for the next 100 years. Propose an integrated global solution to the rapid rise in atmospheric CO 2 that will stabilize concentrations at an economically viable and internationally acceptable level. Past Missions
9
Subject Structure Problem divided into 5-10 subtopics and students divided into teams Each team assigned a Undergraduate Teaching Fellow and Alumni Mentors Each team will also have access to the library staff.
10
Subject Deliverables Each team will communicate through wiki- based structure The entire class will describe and justify its overall plan in a comprehensive web site Each class explains the design in a 60-90 minute presentation before a panel of experts and a general audience. Presentation will be webcast around the world “The whole world is watching, the whole world is watching…..”
11
Mission 2010
12
Mission 2011
13
Mission 2012
14
Mission 2013
15
Mission 2014
16
Subject Grading Individual performance (30%) Team performance (30%) Class accomplishment (40%) Pass/No Record but…… we do assign “hidden grades”
17
Devise a plan to ensure that all nations, including those that aspire to be developed, have access to ever decreasing strategic natural resources by implementing recycling technologies, searching for non-traditional sources, and developing an environmentally sensitive global management plan Your Mission is to....
18
Strategic Metals and Minerals Often defined as minerals required to supply the industrial, military, and essential civilian needs of a country, and not found in or produced by that country in sufficient quantities to meet its need. Any interruptions in the flow of these minerals will affect not economic stability, technological competitiveness, and national security. Highly variable global distribution typically controlled by a small number of countries
19
Periodic Table Rare earth elements Platinum group elements Nb, Ta, Ga, In P
20
Abundances of Elements in the Solar System Anders and Grevasse (1989) Si Mg C N O Na Al P K S Ir Ru Rh Pd La Lu Y Rare earth elements Platinum group elements 1 100 10 4 0.01 10 -4 10 -6 10 -8 Abundance (atoms per Si atom) Ga In Ta Nb P Nb, Ta, Ga, In
21
Example: Gallium First became strategic metal in decade after WW II: critical component in Pu “pit” in atomic bombs Today: critical for high speed electronic switches, solid state lasers and optoelectronic sensors The U.S. imports 100% of its Ga needs Fat Man
22
Coltan (Nb, Ta) 2 O 6
23
Rare Earth Elements Humphries (2012) A Prius electric motor requires 2 pounds of neodymium and twenty 22-33 pounds of lanthanum for its battery!
24
Neodymium Super Magnet
25
History of Rare Earth Oxide Production Institute for Energy Research (2010) USA China Others
26
Are rare earth elements critical to defense industry? Should they be stockpiled? Energy amplification: The Laser Avenger Magnets: Tomahawk Cruise Missile Implications for National Defense
27
Mountain Pass Mine, California Is outsourcing mining to other countries a net gain for environment? What mines should be opened? Better approaches: new mining technologies? recycling? substitution of other minerals? Strategy for Mining
28
Do Rare Earth Elements Enable “Green” Technology? Acid lake, Baotou, China
29
Are Current Uses of Strategic Metals Good for the World? Brenan (2008) Catalytic converters destroy toxins but yield greenhouse gases! 2NO x 1/2 N 2 + xO 2 2CO + O 2 2CO 2 2C x H y + (2x+y/2)O 2 2xCO 2 + yH 2 O Could they be replaced with something better?
30
What are Human Costs of Strategic Mineral Mining? Brenan (2008) Dozens of striking platinum miners were massacred last month in South Africa
31
Phosphate-based fertilizers have helped grow agriculture in the past century, but supplies are limited. Phosphate is often THE limiting nutrient to plant growth Reserves may vanish within century if growth continues at 3%/year China does not export Phosphates
32
What are the consequences of doing nothing? Is access to strategic metals a basic human right? Important Questions to Address
33
We will present possible team topics and allow you to “self-organize” Each of you team, Each team UTF, library liaison, alumni mentors Each team will be responsible articulating the nature of the problem and developing a range of strategies and options to deal with it Just a way to get started Class Structure
34
Terrascope room 16-xxx: a place to study, hang out, interact, cook, eat, SLEEP, always someone around to talk to Terrascope lunches: see calendar—eat, listen (or not), learn Special activities: movie nights, special dinners, and ideas? Terrascope Social Structure Outside Class
35
Ben Weiss (bpweiss@mit.edu)bpweiss@mit.edu (12.000 Professor) Erin Shea (nuptse@mit.edu)nuptse@mit.edu (Teaching Assistant) Anne Bauer (annbauer@mit.edu)annbauer@mit.edu (Teaching Assistant) Chris Sherratt (gcsherra@mit.edu) (Library staff) Ari Epstein (awe@alum.mit.edu) (Terrascope staff and Terrascope Radio) Debra Aczel (daczel@mit.edu)daczel@mit.edu (Terrascope Administrator) Sam Bowring (sbowring@mit.edu)sbowring@mit.edu (Terrascope Director ) Important Contacts
36
Meet in 3-270 This Friday’s Class
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.