Presentation is loading. Please wait.

Presentation is loading. Please wait.

ENERGY CONVERSION MME 9617a Eric Savory Lecture 1 - Introduction

Similar presentations


Presentation on theme: "ENERGY CONVERSION MME 9617a Eric Savory Lecture 1 - Introduction"— Presentation transcript:

1 ENERGY CONVERSION MME 9617a Eric Savory Lecture 1 - Introduction
Lecture 1 - Introduction Department of Mechanical and Material Engineering University of Western Ontario

2 Today’s class will cover:
● Outline of the course and course project ● A brief history of energy sources and energy usage ● World population growth and energy demand ● Introduction to some present day numbers and challenges

3 Course Objectives ● To introduce the basic technical and economic
criteria for the design of efficient energy conversion systems, including traditional as well as alternative power systems ● To discuss strategies for increased energy efficiency and more environmentally sound operation ● To assess design alternatives and selection criteria, based on long-term economic viability and overall energy management strategies

4 Topics ● Introduction to energy conversion
● Economic considerations in energy production ● Fuels ● Review of basic theory ● Thermal energy (e.g. heat exchangers) ● Mechanical energy (e.g. pumps, turbines) ● Heat pumps ● Solar power ● Nuclear power ● Fuel cells ● Wind and wave

5 Assessment The course grade will be based on term work: Assignments (30%) Term research project report and presentation (70%)

6 The Norfolk Broads East Anglia, England

7 By the 12th century, much of East Norfolk had been cleared of its woodland for fuel and building materials The first written evidence of peat digging for fuel in the Broads also dates from this time Between the 12th and 14th centuries peat digging (or turf cutting) was a major industry Peat diggings were abandoned by the 14th century because they kept filling with water. They flooded, and this man-made landscape became a wetland, rich in wildlife. Now it is a major tourist and vacation area ….

8 A brief history of energy sources and energy usage

9

10

11 It all started with wood and peat ……

12 Electricity Coal

13 Oil

14 Nuclear

15 Those are the main energy sources but what are they used for ?
Transportation

16 Transportation

17 Energy Uses have changed …

18 Energy consumption in the USA (1775 – 1999)

19 World population growth
and energy demand

20 World population (1,000s) ? Likely to peak at bn

21 Are there limits? Science, 162, “The Population Bomb”

22

23 Annual income per capita $ US
, , ,000 Annual income per capita $ US

24 Percentage shares of world population, world GDP
Percentage shares of world population, world GDP* and world commercial energy consumption for selected countries * GDP – Gross Domestic Product

25 Carbon emission factors from energy use
CO2 = Pop x (GDP / pop) x (Btu / GDP) x (CO2 / Btu) – Seq GDP / pop represents standard of living Btu / pop represents energy intensity CO2 / pop represents carbon intensity Seq accounts for sequestered CO2 * British Thermal Unit - defined as the amount of heat required to raise the temperature of one pound of water by one degree Fahrenheit. Melting a pound of ice at 32 °F requires 143 BTU.

26 * Organization for Economic Co-operation and Development

27 BP Statistical Review of World Energy (2000) Edmonds J, Energy Policy
23, 4 – 5 (1995)

28 Introduction to some present day numbers and challenges

29 21st century trends Increase in population leads to increasing demand for energy Interest in developing local energy resources grows Environmental and health concerns increase on all scales Increased electrification Infrastructure security concerns increase

30 The numbers are huge ! Population 6,000,000,000
Land area 58,000,000 sq miles Population density 100+ people / sq mile Annual energy consumption 400 Quads oil equivalent 72,000,000,000 bbl coal equivalent 14,400,000,000 tonnes Registered car and trucks 700,000,0000 Electric generating capacity 3,000,000 MW Annual steel production 650,000,000 tonnes Annual aluminium production 20,000,000 tonnes Annual cement production 1,500,000,000 tonnes

31 Progressing towards asymptotic ?
Population -6+ billion growing to 10 to 15+ billion (?) Total primary energy – 400 quads growing to quads annually (1 quad = 1015 Btu) 73 billion growing to 365+ billion bbl of oil/yr Per capita energy per year 10 BOE/yr-person growing to 25 BOE/yr-person Number of cars and trucks – 750 million now growing to 5 + billion MW electric generating capacity - 3.5 million MW now growing to 15+ million MW

32 Other global concerns Carbon emissions may be affecting climate
Health concerns over other emissions are growing Global fossil energy resources are not uniformly distributed

33

34 Find alternatives to oil Solar energy etc
Solutions: Find alternatives to oil Solar energy etc Transport energy as energy, not as mass Nanotechnology  local energy storage (e.g. 100 kW) High voltage long distance transmission (100s GW rather than 1GW) 2003 TOP 10 GLOBAL CONCERNS 2050 * NaturalSciences/Smalley/emplibrary/ 120204%20MRS%20Boston.pdf

35 Energy sources & demand
Total primary power required For IPCC BAU scenario M I Hoffert et al, Nature, 395, 881 – 4 (1998) WRE = Wigley, Richels and Edmonds, ppmv of CO2. Pre - industrial level is 350 ppmv

36 Energy questions Can we satisfactorily reduce emissions and remediate wastes residing in our water and air basins? Can we offset changes being introduced by our consumption of fossil fuels? Can we significantly reduce our dependence on imported oil? Can nuclear, renewable, and other non-fossil energy resources be deployed quickly enough to make a difference?

37 End use of energy forms Thermal Electrical Electromagnetic Chemical
fuels for transportation fuels for industrial processes Electrochemical Mechanical ( KE or PE ) for power

38 Primary energy sources
Nuclear fission and fusion Solar radiation Chemical reactions, e.g. combustion of fossil and biomass fuels Gravitational forces, planetary motion, and friction ( tides, waves and wind)

39 Energy rate scaling Food 250 kcal / candy bar
Average daily requirement kcal / day = 100 W Human heart 2 W Running W 1 horsepower W 747 jet plane MW Automobile kW Space shuttle (with boosters) 14 GW Typical electric gen. plant MW 1 wind turbine MW Laptop computer 10 W Cell phone 2 W US energy consumption per year: 3.5 TW Worldwide energy consumption per year: 15 TW

40 Sustainable energy technology characteristics
Non-depletable on a short time scale Low impacts on natural resources - land, water, etc. across process life cycle Accessible and well distributed – available close to demand Emissions free – no NOx, SOx, CO2, particulates etc. Scalable – from 1 kW to 1,000 MW Dispatchable - for base load, peaking and distributed needs Robust - simple, reliable, durable and safe to operate Flexible - applications for electricity, heat, and co-gen Competitive economically

41 Energy supply options Earth based energy Ocean based energy
Conventional fossil fuels (coal, oil, natural gas) Unconventional fossil fuels (oil shale, tar sands) Nuclear fission – uranium, etc. Hydropower Geothermal heat Ocean based energy Tidal Waves Solar based energy Solar thermal Photovoltaics Wind Biomass

42 Millions of Tons of CO2 emitted per Quad (1015 BTU)

43 Fossil and nuclear options
Fossil – oil and gas resources are depletable and maldistributed worldwide and carbon sequestration will be costly and not a permanent solution Fissile – no carbon emissions but wastes, proliferation and safety remain as dominant public acceptance issues Fusion – technology not ready with uncertain costs and performance

44 Renewable energy technologies have high sustainability index scores
Solar Wind Biomass Geothermal Hydro Costs relative to fossil fuels remain high

45 ‘Playing by the rules’ The Laws of thermodynamics are relevant !!
Heat and electric power are not the same Conversion efficiency does not have a single definition All parts of the system must work – fuel supply, fuel and energy converters, control and monitoring sub systems, and the interconnection if required

46 Seek collateral opportunities
Combined heat and power (co-generation) to increase resource utilization efficiency Integrated high efficiency building designs Hybrid energy use with distributed generation Manufacturing processes that use less materials and energy

47 Energy chains Locating a source – solar, fossil, geothermal, nuclear
Recovery and/or capture Storage of a resource, or storage due to the intermittency of a renewable energy supply Conversion, upgrading, refining, etc. Storage as a refined product Transmission and distribution Use and re-use Dissipation as degraded energy and/or wastes

48 Resource assessment Global energy resources are not uniformly distributed and vary widely in quality Characterization inadequate for developed countries and very poor for developing countries Energy resource bases and energy reserves are not the same New technology enhancements exist to significantly improve resolution and quantification of assessments Resource assessment is under-valued and under-supported nationally and internationally

49 Global resources bases
Estimating resource bases is highly uncertain – (i) for mineral-based resources like oil, gas, and coal – dependence on technology and has limited data. (ii) for renewables land-use and capture efficiency are critical

50 Historical energy prices

51 Price vs. cost vs. value 1 litre of gasoline = $ 0.50
1 litre of gasoline without tax = $ 0.35 1 litre of liquid hydrogen = $ 0.85 1 litre of bottled water = $1.00 1 litre of milk = $ 1.50 1 litre of orange juice = $ 3.00 1 litre of Dom Perignon 1995 = $ 1 litre Ralph Lauren aftershave = $ 1 litre of Chanel #5 perfume = $ 12,000.00

52 Courtesy of MIT website

53 Next week: Definitions of energy and the economic considerations in energy production

54 Details of the Individual Term Project
Report: 50% of course grade Presentation: 20% of course grade

55 Objective To improve your knowledge of a specific area of energy conversion analysis by providing an individual project report concerning a critical appraisal of an energy conversion process (or series of linked processes) in which you will examine current practice including example calculations, the process efficiencies and alternative strategies for achieving the same practical outcome, against a background of the need to reduce local and global carbon emissions. To present the project to the class, including answering questions from the audience. To provide a final report.

56 Topic Selection Firstly, you should select your topic from one of the following sectors: Energy production, storage and transmission Transportation (e.g. road vehicles, rail vehicles, aircraft, ships) Manufacturing industry (e.g. raw materials processing, finished product manufacturing) The built environment (e.g. houses, roads, tall buildings, bridges)

57 Researching the literature
Then, within that sector choose a specific energy conversion process or linked processes. You will then need to identify and obtain the key papers relating to your chosen topic as these will form the basis of your discussion. A minimum of 10 papers must be included in your discussion, at least 5 of which should be journal papers. It is useful if you can identify a recent review paper as this will help you find the key publications. Next weeks class: Engineering librarian will give a talk on research strategies for this course

58 Deadlines Before Wednesday 24th September – Choose topic and me title and brief outline of proposed area of research Before the next class - I will you with comments concerning your proposal so you can start detailed work Wednesday 26th November - Paper copy of your final report due (11 weeks from today!) 5 pm on Tuesday 18th November – Powerpoint presentation file to be ed or given to me 19th and 26th November – Presentations (15 minutes) in class time slot to be attended by all students registered on the course

59


Download ppt "ENERGY CONVERSION MME 9617a Eric Savory Lecture 1 - Introduction"

Similar presentations


Ads by Google