Presentation is loading. Please wait.

Presentation is loading. Please wait.

WinTR-20 Calibration ProceduresFebruary 20151 WinTR-20 Calibration Procedures.

Similar presentations


Presentation on theme: "WinTR-20 Calibration ProceduresFebruary 20151 WinTR-20 Calibration Procedures."— Presentation transcript:

1 WinTR-20 Calibration ProceduresFebruary 20151 WinTR-20 Calibration Procedures

2 February 20152 Lesson Objectives 1. Determine the most appropriate level of WinTR-20 calibration effort warranted based on the scope of the project and available data. 2. Perform a non-complicated fully comprehensive (both peak rate and volume of runoff based) calibration using the Win-TR20 computer program. 3. Identify when a particular data set contains some data that cannot reasonably be calibrated to.

3 WinTR-20 Calibration ProceduresFebruary 20153 Why calibrate Win-TR20? Initial estimates of input parameters (RCN, t c, Unit Peak Factor, etc) can be in error. If project damage/benefit measurements are sensitive and climate/stream gage data exists then results may warrant calibration. Calibrate to historical/known events, then run calibrated model with design criteria storms.

4 WinTR-20 Calibration ProceduresFebruary 20154 Should you calibrate WinTR-20 for a: Grassed waterway? 378 farm pond? PL-566 urban channel? Floodplain management study? Think of the need, gain, and effort involved as well as the quality of data available.

5 WinTR-20 Calibration ProceduresFebruary 20155 Calibration Basics The extent of calibration effort depends on: –The purpose that the hydrologic model serves. –The amount and quality of data available for comparison purposes.

6 WinTR-20 Calibration ProceduresFebruary 20156 Simple Calibration Involves matching Win-TR20 peaks to peak flow frequency curves of available crest stage data at a selected site. Volumetric calibration not possible since only peak data exists. Can be done with states’ recurrence flow regression equations, generally available through USGS (US Geological Survey). Not optimal but sometimes it’s all you have.

7 WinTR-20 Calibration ProceduresFebruary 20157 Simple Calibration (Continued) See related lesson on Win-TR20 sensitivity. The following parameters show increased sensitivity for peak flow calibration: –Time of Concentration –Unit Peak Factor –Runoff Curve Number Increasing Sensitivity

8 WinTR-20 Calibration ProceduresFebruary 20158 Typical WinTR-20 Calibration Procedure (with rain & stream flow data) Basic Concepts- Use “identifiable” storms/runoff data. Calibrate volumes first, then verify (on 2 nd storm). Calibrate peaks after volumes are calibrated then verify peak modeling (on 2 nd storm).

9 WinTR-20 Calibration ProceduresFebruary 20159 Typical WinTR-20 Calibration Procedure Assumes the following adequate data is available: stream gage rainfall amount and distribution flood history Major historical storms may not be desirable if recorded stream gage data is estimated and watershed and hydraulic conditions have changed. Pick storms in which the major runoff can easily be distinguished from the baseflow.

10 WinTR-20 Calibration ProceduresFebruary 201510 Typical Win-TR20 Calibration Procedure Pick the right storms to calibrate/verify with: Select at least 2 calibration storms with the following characteristics: a)Storms large enough to produce flooding. b)Storms with essentially uniform rainfall distribution over the entire watershed. c)Storms of a nature whose hydrograph can be easily distinguished from the stream gage data (typically isolated thunderstorms).

11 WinTR-20 Calibration ProceduresFebruary 201511 Typical Win-TR20 Calibration Procedure Calibration storm requirements continued: d) Use recent storms if watershed conditions have changed or if hydraulic storage or flow characteristics have been altered (urban developments). e) Pick storms that did not produce unusual hydraulic conditions (e.g. dam breach, obstruction developments, bypass of flows around the gage site, etc.).

12 WinTR-20 Calibration ProceduresFebruary 201512 Typical Win-TR20 Calibration Procedure Calibration storm requirements continued: f) Calibration for a particular storm event will entail the input of the specific rainfall distribution into Win- TR20. This has significant impacts in matching the predicted to actual hydrograph shape.

13 WinTR-20 Calibration ProceduresFebruary 201513 Typical Win-TR20 Calibration Procedure 1. Estimate watershed hydrologic input parameters (RCN, Tc). 2. Perform a hydrologic analysis (Win- TR20) of the watershed using the above parameters and a gaged historical rainfall. See how the predicted volume of runoff compares to the historical volume. Historical storm hydrograph can be plotted to determine volume.

14 WinTR-20 Calibration ProceduresFebruary 201514 3. If runoff volumes are vastly different, then look to the parameters that effect volume: RCN- Was this selected properly? RCN- What stage of growth was present when historical storm occurred? ARC- Was there a lot of rain prior to the historical event or maybe was it drier than normal (be aware of how ARC is assigned)? Typical WinTR-20 Calibration Procedure

15 WinTR-20 Calibration ProceduresFebruary 201515 Typical Win-TR20 Calibration Procedure 3. (continued) Input parameters that effect volume: Drainage Area- Was the whole area contributing (diversions in or out, sinkholes, karst areas, etc.)? Rainfall- Is the historical rainfall accurately portrayed throughout the entire watershed?

16 WinTR-20 Calibration ProceduresFebruary 201516 Typical Win-TR20 Calibration Procedure 4. Correct any problematic input parameters detected in Step 3. Re-run Win-TR20 to check new volume of runoff compared to gaged historical volume. Look to minor changes in the RCN to achieve a closer match. 5. Run steps 2-4 for a second historical event. Be sure ARC is properly set. Compare predicted volume of runoff to historic volume for this storm.

17 WinTR-20 Calibration ProceduresFebruary 201517 Typical Win-TR20 Calibration Procedure 6. Compare base RCN’s (with ARC impacts removed) for both calibrated storms. They should be close or something is wrong with another parameter in one or both of the storm event models (re-examine steps 2-4). This is a verification step. Note- Calibration problems can arise where it is advised to disregard a particular storm and evaluate another one with more reproducible results.

18 WinTR-20 Calibration ProceduresFebruary 201518 Typical Win-TR20 Calibration Procedure 7. With volumes matched it is now time to calibrate the peak discharge. Compare gaged historical peak with the predicted peak for the first storm (with volumetric calibrated and verified input parameters). Make adjustments in Tc first if necessary to calibrate peaks. If ineffective with Tc then consider the Dimensionless Unit Hydrograph.

19 WinTR-20 Calibration ProceduresFebruary 201519 Typical Win-TR20 Calibration Procedure 8. If calibration is still ineffective then consider adjustments to stream reach routing parameters. This will likely involve modifying HEC-RAS runs (n-values, expansion/contraction coefficients, reach and floodplain lengths etc). Somewhere in this mix, a calibration should be achieved. Note- With volumes matching and peaks being tuned, be aware of the overall hydrograph shape and if further adjustments are needed.

20 WinTR-20 Calibration ProceduresFebruary 201520 Typical Win-TR20 Calibration Procedure 9. Run steps 6 and 7 for the second storm and compare the Win-TR20 input parameter selection between the two storms to verify peak prediction features. Note- Calibration problems can arise where it is advised to disregard a particular storm and evaluate another one with more reproducible results. Baseflow adjustment may be key.

21 WinTR-20 Calibration ProceduresFebruary 201521 Typical Calibration Procedure 10. The calibration process is now complete. The calibrated Win-TR20 input parameters offer the most reliable means of modeling the watershed for planning or design purposes.

22 WinTR-20 Calibration ProceduresFebruary 201522 Another Calibration Procedure… Comparison of actual high water marks from known events with high water marks from Win- TR20 and HECRAS models. The typical situation is to have only high water marks and a “feel” for total watershed rainfall that occurred (no actual distribution). Can prove difficult because of the many variables involved between the 2 models. Relies heavily on sound engineering judgment.

23 WinTR-20 Calibration ProceduresFebruary 201523 What about calibration conflicts? They do happen. Review procedures, check for errors. Review target data, look for outliers. Use professional judgment. If a particular storm event refuses to calibrate comparably with others then drop it for another. Unknowns may be the cause. Calibration will not typically yield perfect results. Look for reasonable trends.

24 WinTR-20 Calibration ProceduresFebruary 201524 Isabel - 2003

25 WinTR-20 Calibration ProceduresFebruary 201525 QUESTIONS???

26 WinTR-20 Calibration ProceduresFebruary 201526 The End The End


Download ppt "WinTR-20 Calibration ProceduresFebruary 20151 WinTR-20 Calibration Procedures."

Similar presentations


Ads by Google