# Lin Chen Tom Nierodzinski Yan Di Lv Zhongyuan Optimum Sensitivity Analysis MAE 550 12/10/07.

## Presentation on theme: "Lin Chen Tom Nierodzinski Yan Di Lv Zhongyuan Optimum Sensitivity Analysis MAE 550 12/10/07."— Presentation transcript:

Lin Chen Tom Nierodzinski Yan Di Lv Zhongyuan Optimum Sensitivity Analysis MAE 550 12/10/07

Outline Objective Problem Formulation Results Analysis Conclusion

Objective Better understand OSA by comparing different parameters for the same design problem

Problem Formulation Parameters Chosen: P = Stress E = Youngs Modulus σ = allowable stress y = deflection Design Variables: b i and h i i = 1,5 (Total of 10 design variables) (Total of 21 constraints)

Problem Formulation cont. DOT results of optimum point

OSA Analysis Lambda values

OSA Analysis Matrix dimensions for OSA

Stress(P) = 50,000 N

Active to inactive p = 5.6*10^3 Inactive to Active p = 3.52*10^3 Minimum % 7%

Youngs Modulus = 2x10 7 Pa

Active to inactive p = 1.56*10^6 Inactive to Active p = 7.47*10^5 Minimum % 3.7%

Sigma = 14,000 N/cm 2

σ = 14,000 N/cm 2 Active to inactive p = 3.64*10^3 Inactive to Active p = 345 Minimum % 2.5%

Y(deflection) = 2.5 cm

Active to inactive p = 0.19 Inactive to Active p = 0.0924 Minimum % 3.69%

Conclusion OSA is limited in minimum delta p In this case inactive constraints are more sensitive

Questions?

Similar presentations