Presentation is loading. Please wait.

Presentation is loading. Please wait.

Orbital verification of the performance of Suzaku XIS

Similar presentations


Presentation on theme: "Orbital verification of the performance of Suzaku XIS"— Presentation transcript:

1 Orbital verification of the performance of Suzaku XIS
K. Hayashida, K. Torii, M. Namiki, N. Anabuki, S. Katsuda, N. Tawa, T. Miyauchi, H. Tsunemi, Osaka Univ. (Japan); H. Matsumoto, T. G. Tsuru, H. Nakajima, H. Yamaguchi, K. Koyama, Kyoto Univ. (Japan); T. Dotani, M. Ozaki, H. Murakami, H. Katayama, Japan Aerospace Exploration Agency (Japan); S. Kitamoto, Rikkyo Univ. (Japan); H. Awaki, Ehime Univ. (Japan); T. Kohmura, Kogakuin Univ. (Japan); B. LaMarr, E. Miller, S. E. Kissel, M. W. Bautz, R. F. Foster, Massachusetts Institute of Technology

2 X-ray Imaging Spectrometer (XIS)
X-ray CCD Cameras onboard Suzaku 3 Cameras (XIS0,XIS2,XIS3) contains FI-CCD、1 Camera(XIS1) has BI-CCD CCD Operation Temp = -90℃ 1024x1024pixels FOV18’x18’ Energy Range keV

3 Calibration Task Share
Components Location X-ray Source QE reference Chip level CSR/MIT Fluorescent X-rays (C,O,F,Al,Si,P,Ti,Mn,Cu) ACIS chips calibrated at BESSY Camera without OBF +FM AE Osaka Grating Spectrometer keV Polypro-window Gas PC & XIS-EU Kyoto Fluorescent X-rays (Al,Cl,Ti,Mn,Fe,Zn,Se) Window-less SSD OBF Synchrotron Facility Synchrotron X-rays + monochrometer (Transmission measurement with PIN diode) Camera onboard the satellite ISAS/JAXA 55Fe

4 Initial Operation and Current Status
2005/7/10 Suzaku Launch 2005/7/25 XIS System Power On 2005/8/12-8/13                XIS Door Open                 =First Light 2006/05/31                    More than 100 objects were observed. 4 CCD Cameras are functioning properly. E JAXA press release

5 ~0.5keV incident BI Small tail component!

6 Chemisorption Process
Burke et al., 2004, IEEE transactions on Nuclear Science, 51, p.2322

7 すざくXIS 7/10 0パス非可視で電磁バルブの開閉。 7/11 電磁バルブの開(4パス)閉(5パス)。 7/21 温度を上げてバルブ開。
7/10 0パス非可視で電磁バルブの開閉。 7/11 電磁バルブの開(4パス)閉(5パス)。 7/21 温度を上げてバルブ開。 7/24 MPU, PPU立ち上げ。 7/25 AE立ち上げ。データ取得開始(frame mode) 7/26 CCD設定温度:−60℃ 7/27 CCD設定温度:−90℃(ノミナル動作温度) 8/11 CCD設定温度: −80℃。HP設定温度: −35℃。 8/12 XIS-3ドア開。 8/13 XIS-2,1,0 ドア開。 Better Energy Resolution at Low Energies

8 Suzaku Team Compiled by Fujimoto et al.

9 Orbital Calibration Items
Energy Scale Tracking evolution of Charge Transfer Inefficiency (CTI) Verification of Energy Scale in orbit Quantum Efficiency Verification of QE measured on ground Monitoring possible change of QE in time Background Energy Resolution and Response Profile Updating Calibration Data Base continuously. Software tools are also required to be updated.

10 Ex-PHA relation (Calibration on ground)
Residual to straight line fit Residual to broken line fit +10eV -10eV Si K edge (E=1839 eV)

11 55Fe Cal-Source→ Gain monitor
Mn-Ka 5.9keV Mn-Kb 6.5keV 55Fe Cal-Source→ Gain monitor counts PH [ch] Peak ch of Mn-Ka (Normalized to the ch at 1st ligt) Energy Resolution FWHM@5.9keV Gain Decrease ~2%/year Energy Resolution 140eV ->170~180eV CTI increase induced by orbital radiation damage of the CCD

12 Q’ = Q(1-CTI)N → CTI = (Q- Q’) / Q / N
Determination CTI parameters included in rev0.6 data Q’ = Q(1-CTI)N → CTI = (Q- Q’) / Q / N Q = PHA(ACTY=0) Q : Initial charge Q’ : Readout charge N : Number of P transfer PHA(Y=0) – PHA (Y=896, T) PHA(Y=0)×896 Whole Area cal src data (8/11) CTI = CTI(Seg1) = CTI(Seg 2) = [CTI(Seg0) + CTI(Seg3)] / 2 Corner cal src data (8/15~11/20) CTI = CTI_CONST + CTI_NORM×(PHAS)CTI_POW In rev0.6… CTI_POW = -0.5 CTI_CONST = 0 T Q’(T) = PHA(ACTY=896, T)

13 Energy Scale Correction (Charge Trail&CTI)
Rev0.6 Correction as a function of time, location, assuming CTI energy dependence Ex^-0.5 CTI is constant at ACTY=0 Cyg Loop Galactic Center Sgr C XIS0 , XIS1, XIS2 , XIS3 XIS0 , XIS1, XIS2 , XIS3 line center energy [keV] line center energy [keV] 1% 1% broken line: expected energy broken line: expected energy ACTY ACTY <2% at lower energy, <1% at higher energy side. Revised correction (rev0.7 processing) is almost ready now.

14 QE + XRT effective area verification with Crab
By S.Okada et al., XRT team QE + XRT effective area verification with Crab

15 QE (low energy part)Calibration RXJ1856.5-3754 2005/10/24-26
Isolated NS C-K edge ~0.3keV Rev0.3 data -10eV offset 63.5eV blackbody a: Based Cal on the Ground b: a x excess0.15mmC c: Dead Layer =Design Value d: c x excess0.15mmC >0.3keV 1/3-1/2 of expected value

16 E0102-72 Repeated Observation →Degradation of QE
E0102: SNR in SMC, bright in soft X-ray lines excellent calibrator for low-E gain, QE changes OVIII NeIX NeX MgXI OVII model thermal bremss + 24 Gaussian emission lines Galactic + SMC absorption pure C absorption from contaminant (varabs) gain shift -5 eV ~ -15 ev r2 ~ 1.6 (FIs) to 2.5 (BI)

17 Low background level is confirmed
→Efficient for low surface brightness

18 Night Earth BGD Spectra
2 4 6 8 10 Ex (keV)

19 Cut-off Rigidity dependent BGD
Light Curve XIS1 NEP blank sky (2005/9/2) 5-10keV count rate vs COR XIS0 XIS1 XIS2 XIS3 keV Count rate keV COR Time (s)

20 Summary 4 XIS CCD cameras are functioning properly
More than 100 targets were observed already. Gain and energy resolution are monitored with built-in calibration source. CTI correction to compensate radiation damage induced gain decrease (~2%/year) is introduced. Energy scale error in rev0.6 processing is 1%-2%. Rev0.7 processing with higher accuracy is now almost ready to use. QE at high energy is almost as expected (error ~10%) from Crab data. Low energy QE suffers significant degradation. Possibly C-dominant material put on Optical Blocking Filter (OBF) (Details will be presented in a separate paper) Activity to update calibration and their tool is under going.


Download ppt "Orbital verification of the performance of Suzaku XIS"

Similar presentations


Ads by Google