Presentation is loading. Please wait.

Presentation is loading. Please wait.

文化大學電機系2011年先進電機電子科技研討會 設計於深次微米CMOS製程之功率感知高速類比數位轉換積體電路 (Power-Aware High-Speed ADC in Deep Submicron CMOS)

Similar presentations


Presentation on theme: "文化大學電機系2011年先進電機電子科技研討會 設計於深次微米CMOS製程之功率感知高速類比數位轉換積體電路 (Power-Aware High-Speed ADC in Deep Submicron CMOS)"— Presentation transcript:

1 文化大學電機系2011年先進電機電子科技研討會 設計於深次微米CMOS製程之功率感知高速類比數位轉換積體電路 (Power-Aware High-Speed ADC in Deep Submicron CMOS)

2 Outline Motivation High-speed ADC IC design example
Digitally-assisted algorithm and architecture Circuit implementation Experimental results Summary

3 High-Speed ADC Applications
Ref [1]

4 Power-Aware High-Speed ADC Trends
Power / Energy Higher resolution requires more energy to achieve. Speed / Bandwidth Resolution and speed are trade-offs. Bottleneck SAR architecture saves power and chip area, but speed is limited by its conversion algorithm. Pipelined architecture achieves high speed by concurrent operations, but OPAs consume considerable power. Digitally assisted ADCs Digitally assisted algorithm alleviates analog circuit requirement; therefore, it takes advantages of advanced processes to trade little digital power to gain the benefits from analog part.

5 High-Speed ADC Energy vs. SNDR
Energy is proportional to resolution (SNDR). FOM (Power / (Sample rate * 2ENOB)) is an indicator to compare different ADC designs. State-of-the-art ADC designs approach 10fJ/c.s. Current world record is 4fJ/c.s. Ref [2]

6 High-Speed ADC Bandwidth vs. SNDR
Bandwidth is inverse proportional to resolution (SNDR). State-of-the-art high-speed high-resolution ADCs are limited by clock jitter around 0.1psrms. Ref [2]

7 Experiment 1 - Low-Power High-Speed Two-Step ADC
Technology 0.13μm Resolution 6-bit Active area 0.16mm2 Supply voltage 1.2V Sample rate 1-GS/s SFDR 40.7dB SNR 33.8dB SNDR 33.7dB Power 49mW FoM 1.24pJ/c.s. Rearrange the timing of two-channel MDACs and apply a self-timing technique to alleviate comparator comparison time and charge injection disturbance Slightly increases CADC accuracy to ease OPA signal swing design Ref [3]

8 Experiment 2 - Low-Power High-Speed Sub-range SAR ADC
Technology 0.13μm Resolution 12-bit Active area 0.096mm2 Supply voltage 1.2V Sample rate 10MS/s SFDR 69.8dB SNR 61.2dB SNDR 59.7dB Power 3mW FoM 0.38pJ/c.s. Relieve MSB accuracy requirement by the sub-range concept with overlapping Reduce total input capacitance by using the double-unit-sized coupling-capacitor Ref [4]

9 Experiment 3 - Low-Power High-Speed SAR ADC
Technology 90nm Resolution 10-bit Chip area 1.029mm2 Supply voltage 1.0V Sample rate 40MS/s SFDR 61.9dB SNDR 54.1dB Power 1.34mW FoM 81.1fJ/c.s. Attain high conversion speed by adopting non-constant-radix switching method Compared to conventional non-binary designs, its DAC implementation is simpler.

10 Experiment 4 - Low-Power High-Speed Pipelined ADC
Technology 90nm Resolution 10-bit Active area 0.21mm2 Supply voltage 1.2V Sample rate 320MS/s SFDR 66.7dB SNDR 51.2dB Power 42mW FoM 0.44pJ/c.s. Achieve high speed with a low-gain OPA by using digitally-assisted architecture, thus the OPAs have excellent power efficiency A simple gain-error self calibration method without external precise references requires only 168 calibration clock cycles. Ref [5]

11 Digitally-Assisted High-Speed ADC Example (Experiment 4)
Digitally assisted architecture is future trend to achieve excellent power efficiency. 10b, several hundreds MS/s Pipeline ADCs are widely used in wireless and cloud computing systems but suffer from OPA design in deep submicron CMOS processes. Decreased OPA DC gain Smaller signal swing .

12 Pipeline ADC Accuracy OPA gain
Less Ro of MOSFET in advanced technologies Reduced gain from each stage of OPA More gain stages introduce poles and decrease bandwidth. For 10b accuracy, the 1st stage MDAC requires 66dB OPA DC gain. Capacitor mismatch Raw matching can attain 10b accuracy, not an issue!

13 Closed-Loop Gain Error
For finite A, closed-loop gain ACL is smaller than ideal gain, 1/b. Gain error can be compensated by adjusting b.

14 MDAC Gain Error Due to finite A, closed-loop gain is less than ideal value of 4. b adjustment is proposed to correct MDAC gain error.

15 Proposed MDAC with a Calibration Capacitor
A calibration capacitor, Ccal, is added as a positive feedback to adjust b. Closed-loop gain can achieve 10b accuracy with low DC gain A of 30dB.

16 Self-Calibrated Algorithm (1)
Self-calibrated procedure starts with the last stage MDAC. After MDAC is calibrated, it is treated as “ideal” MDAC. Ideal MDACs subtract 3Vref/8 and then multiply 4. Under-Calibration MDAC samples Vref/8 and then multiplies 4.

17 Self-Calibrated Algorithm (2) – Gain Error
Output is Vref/2 when no gain error Using successive approximation method with iterations, the closed-loop gain reaches 4 with 10b accuracy.

18 Proposed ADC Architecture
On-chip foreground analog self-calibrated technique Gain errors of first three stages are calibrated

19 Calibration Step 128 calibration steps
Each step affects 0.14 % of MDAC gain (~4) with OPA gain of 40dB

20 Calibration Range Ccal in this work can calibrate OPA with a minimum DC gain of 30dB

21 OPA Use small L to increase bandwidth without considering gain
Calibration mode has more compensation capacitance Simulation results: DC gain 40dB, closed-loop BW 1.36GHz

22 Chip Micrograph 0.21mm2 active area in 90 nm low-power CMOS

23 Measured DNL Before calibration After calibration
Before calibration: +1.7 / -1.0 LSB After calibration: +0.7/-0.6 LSB

24 Measured INL Before calibration After calibration
Before calibration: +15.6/-15.2 LSB After calibration: +0.8/-0.9 LSB

25 Measured Dynamic Performance
At low Fin, SNDR ≈ 54.2dB, ENOB ≈ 8.7bit At Nyquist Fin, SNDR ≈ 51.2dB, ENOB ≈ 8.2bit ERBW ≈ 160MHz

26 Measured FFT SNDR ≈ 52.8dB and SFDR ≈ 57.8dB when Fs = 320MHz and Fin = 128MHz

27 Measured Performance Summary
JSSC09 [7] ISSCC07 [8] This Work Technology (nm) 90 130 Calibration Method Foreground /Background Sample Rate (MS/s) 500 205 320 Resolution (bit) 10 DNL/INL (LSB) 0.4/1.0 0.15/0.6 0.7/0.9 Peak SNDR (dB) 55.8 56 54.2 SNDR (dB) at Fs/2 53 51.2 SFDR (dB) - 73.5 66.7 Power (mW) 55 92.5 42 FoM (fJ/c.-s.) 301 881 442 Active Area (mm2) 0.49 0.52 0.21 Note Calibration circuit is off-chip Input buffer power is included

28 Summary A simple self-calibrated algorithm is proposed to correct gain error resulting from low gain OPA in deep submicron CMOS. The self-calibrated process does not require a precise external reference and can be done within only 168 clock cycles. Smallest active area of 0.21mm2 in 90nm CMOS including calibration circuit The prototype ADC achieves 320MS/s conversion rate, 8.7 ENOB and only consumes 42mW. Nice power efficiency is obtained. Power efficiency is the key to high-speed ADC IC designs.

29 Reference [1] [2] B. Murmann, "ADC Performance Survey ," [Online]. Available: [3] H. Chen et al., “A 1-GS/s 6-Bit Two-Channel Two-Step ADC in 0.13-mm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp , Nov [4] H. Chen et al., “A 3mW 12b 10MS/s Sub-Range SAR ADC” in IEEE Asian Solid-State Circuits Conf. Dig. Tech. Papers, Taipei, Taiwan, pp , Nov [5] H. Chen et al., “A 10b 320MS/s Self-Calibrated Pipeline ADC” in IEEE Asian Solid-State Circuits Conf. Dig. Tech. Papers, Peking, China, pp , Nov [6] B. Razavi and B. A. Wooley, “Design Techniques for High-Speed, High-Resolution Comparators,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp , Dec [7] A. Verma and B. Razavi, ”A 10b 500MHz 55mW CMOS ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp , Nov [8] B. Hernes et al.,”A 92.5mW 205MS/s 10b Pipeline IF ADC Implemented in 1.2V/3.3V 0.13mm CMOS,” ISSCC Dig. Tech. Papers, pp , Feb


Download ppt "文化大學電機系2011年先進電機電子科技研討會 設計於深次微米CMOS製程之功率感知高速類比數位轉換積體電路 (Power-Aware High-Speed ADC in Deep Submicron CMOS)"

Similar presentations


Ads by Google