Download presentation
Presentation is loading. Please wait.
1
Day 16: September 15, 2010 Energy and Power
ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 16: September 15, 2010 Energy and Power Penn ESE370 Fall DeHon
2
Previously Where capacitance arises What drives delay
How to optimize Power as a limiting constraint Energy, Power Density Penn ESE370 Fall DeHon
3
Today Power Sources and Design Options Static Capacitive Switching
Short Circuit Penn ESE370 Fall DeHon
4
Power P=I×V Where should we look at I? Penn ESE370 Fall DeHon
5
Power P=IV What’s V? What is I? Steady-State (input fixed)?
When input switches 01 10 Penn ESE370 Fall DeHon
6
Observe I changes over time Data dependent At least two components
Istatic – no switch Iswitch – when switch Penn ESE370 Fall DeHon
7
Static Power Where does Istatic come from? Subthreshold leakage
Gate-Drain leakage Penn ESE370 Fall DeHon
8
Data Dependent? How does value of input impact Istatic?
Penn ESE370 Fall DeHon
9
Reduce Leakage? P=VI How do we reduce leakage?
Penn ESE370 Fall DeHon
10
Switching Penn ESE370 Fall DeHon
11
Switching Where does current go during switching?
Penn ESE370 Fall DeHon
12
Switching Currents Charge (discharge) output If both transistor on:
Current path from Vdd to Gnd Penn ESE370 Fall DeHon
13
Switching Currents Iswitch(t) = Isc(t) + Idyn(t)
I(t) = Istatic(t)+Iswitch(t) Penn ESE370 Fall DeHon
14
Charging Idyn(t) – why changing? Ids = f(Vds,Vgs) andVgs, Vds changing
Penn ESE370 Fall DeHon
15
Look at Energy Penn ESE370 Fall DeHon
16
Energy to Switch Penn ESE370 Fall DeHon
17
Integrating Do we know what this is? Penn ESE370 Fall DeHon
18
Capacitor Charge Do we know what this is? What is Q?
Penn ESE370 Fall DeHon
19
Capacitor Charge Penn ESE370 Fall DeHon
20
Capacitor Charging Energy
Penn ESE370 Fall DeHon
21
Switching Power Every time switch 01 pay:
E = CV2 Pdyn = (# 01 trans) × CV2 / time # 01 trans = ½ # of transitions Pdyn = (# trans) × ½CV2 / time Penn ESE370 Fall DeHon
22
Reduce Dynamic Power? Pdyn = (# trans) × ½CV2 / time
Penn ESE370 Fall DeHon
23
Charging Power Pdyn = (# trans) × ½CV2 / time
Often like to think about switching frequency Ideally, switch per clock cycle Frequency f = 1/clock-period Pdyn = (#trans/clock) ½CV2 f Penn ESE370 Fall DeHon
24
Charging Power Pdyn = (#trans/clock) ½CV2 f Let a = activity factor
a = average #tran/clock Pdyn = a½CV2 f Get back to talking about a…. Penn ESE370 Fall DeHon
25
Short Circuit Power Penn ESE370 Fall DeHon
26
Short Circuit Power Between VTN and Vdd-VTP Roughly:
Both N and P devices conducting Roughly: Penn ESE370 Fall DeHon
27
Peak Current Ipeak around Vdd/2
If |VTN|=|VTP| and sized equal rise/fall Penn ESE370 Fall DeHon
28
Short-Circuit Energy Penn ESE370 Fall DeHon
29
Short-Circuit Energy Penn ESE370 Fall DeHon
30
Short Circuit Energy Looks like a capacitance Q=I×t Q=CV
Penn ESE370 Fall DeHon
31
Short Circuit Energy and Power
Every time switch Also dissipate short-circuit energy: E = CV2 Different C = Csc Ccs “fake” capacitance (for accounting) Largely same dependence as charging Psc = aCscV2 f Penn ESE370 Fall DeHon
32
Reduce Short-Circuit Power?
Psc = aCscV2 f Penn ESE370 Fall DeHon
33
Charging Power Pswitch = Pdyn + Psc = a(½Cload+Csc)V2f
What values can a take on? a>1? a<1? Penn ESE370 Fall DeHon
34
Glitches Inputs Transition from 0 1 0 1 1 1
What does output look like? Penn ESE370 Fall DeHon
35
Class ended here Penn ESE370 Fall DeHon
36
Data Dependent Activity
Consider an 8b counter What is activity, a, for: Low bit? High bit? Assuming random inputs (no glitching) Activity at output of nand4? Activity at output of xor4? Penn ESE370 Fall DeHon
37
Total Power Ptot = Pdyn + Psc + Pdyn Penn ESE370 Fall DeHon
38
Slow Down What happens to power contributions as reduce clock frequency? What suggest about Vth? Penn ESE370 Fall DeHon
39
Reduce V What happens as reduce V? Delay? Energy? Static Switching
Penn ESE370 Fall DeHon
40
Reduce V (no physical scale)
tgd=Q/I=(CV)/I V S×V Id=(mCOX/2)(W/L)(Vgs-VTH)2 Id S2×Id tgd tgd /S Penn ESE370 Fall DeHon
41
Observe Ignoring leakage Penn ESE370 Fall DeHon
42
Energy vs. Power? What do we care about? Battery operated devices?
Desktops? Penn ESE370 Fall DeHon
43
Admin Project Baseline done SPICE Power Measurement 5.5.4
List of ideas to accelerate done? Penn ESE370 Fall DeHon
44
Ideas Three components of power
Static Short-circuit Charging aCV2f dependence for short-circuit, charging Energy-Delay tradeoff: Et2 Penn ESE370 Fall DeHon
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.