Presentation is loading. Please wait.

Presentation is loading. Please wait.

Day 16: September 15, 2010 Energy and Power

Similar presentations


Presentation on theme: "Day 16: September 15, 2010 Energy and Power"— Presentation transcript:

1 Day 16: September 15, 2010 Energy and Power
ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 16: September 15, 2010 Energy and Power Penn ESE370 Fall DeHon

2 Previously Where capacitance arises What drives delay
How to optimize Power as a limiting constraint Energy, Power Density Penn ESE370 Fall DeHon

3 Today Power Sources and Design Options Static Capacitive Switching
Short Circuit Penn ESE370 Fall DeHon

4 Power P=I×V Where should we look at I? Penn ESE370 Fall DeHon

5 Power P=IV What’s V? What is I? Steady-State (input fixed)?
When input switches 01 10 Penn ESE370 Fall DeHon

6 Observe I changes over time Data dependent At least two components
Istatic – no switch Iswitch – when switch Penn ESE370 Fall DeHon

7 Static Power Where does Istatic come from? Subthreshold leakage
Gate-Drain leakage Penn ESE370 Fall DeHon

8 Data Dependent? How does value of input impact Istatic?
Penn ESE370 Fall DeHon

9 Reduce Leakage? P=VI How do we reduce leakage?
Penn ESE370 Fall DeHon

10 Switching Penn ESE370 Fall DeHon

11 Switching Where does current go during switching?
Penn ESE370 Fall DeHon

12 Switching Currents Charge (discharge) output If both transistor on:
Current path from Vdd to Gnd Penn ESE370 Fall DeHon

13 Switching Currents Iswitch(t) = Isc(t) + Idyn(t)
I(t) = Istatic(t)+Iswitch(t) Penn ESE370 Fall DeHon

14 Charging Idyn(t) – why changing? Ids = f(Vds,Vgs) andVgs, Vds changing
Penn ESE370 Fall DeHon

15 Look at Energy Penn ESE370 Fall DeHon

16 Energy to Switch Penn ESE370 Fall DeHon

17 Integrating Do we know what this is? Penn ESE370 Fall DeHon

18 Capacitor Charge Do we know what this is? What is Q?
Penn ESE370 Fall DeHon

19 Capacitor Charge Penn ESE370 Fall DeHon

20 Capacitor Charging Energy
Penn ESE370 Fall DeHon

21 Switching Power Every time switch 01 pay:
E = CV2 Pdyn = (# 01 trans) × CV2 / time # 01 trans = ½ # of transitions Pdyn = (# trans) × ½CV2 / time Penn ESE370 Fall DeHon

22 Reduce Dynamic Power? Pdyn = (# trans) × ½CV2 / time
Penn ESE370 Fall DeHon

23 Charging Power Pdyn = (# trans) × ½CV2 / time
Often like to think about switching frequency Ideally, switch per clock cycle Frequency f = 1/clock-period Pdyn = (#trans/clock) ½CV2 f Penn ESE370 Fall DeHon

24 Charging Power Pdyn = (#trans/clock) ½CV2 f Let a = activity factor
a = average #tran/clock Pdyn = a½CV2 f Get back to talking about a…. Penn ESE370 Fall DeHon

25 Short Circuit Power Penn ESE370 Fall DeHon

26 Short Circuit Power Between VTN and Vdd-VTP Roughly:
Both N and P devices conducting Roughly: Penn ESE370 Fall DeHon

27 Peak Current Ipeak around Vdd/2
If |VTN|=|VTP| and sized equal rise/fall Penn ESE370 Fall DeHon

28 Short-Circuit Energy Penn ESE370 Fall DeHon

29 Short-Circuit Energy Penn ESE370 Fall DeHon

30 Short Circuit Energy Looks like a capacitance Q=I×t Q=CV
Penn ESE370 Fall DeHon

31 Short Circuit Energy and Power
Every time switch Also dissipate short-circuit energy: E = CV2 Different C = Csc Ccs “fake” capacitance (for accounting) Largely same dependence as charging Psc = aCscV2 f Penn ESE370 Fall DeHon

32 Reduce Short-Circuit Power?
Psc = aCscV2 f Penn ESE370 Fall DeHon

33 Charging Power Pswitch = Pdyn + Psc = a(½Cload+Csc)V2f
What values can a take on? a>1? a<1? Penn ESE370 Fall DeHon

34 Glitches Inputs Transition from 0 1 0  1 1 1
What does output look like? Penn ESE370 Fall DeHon

35 Class ended here Penn ESE370 Fall DeHon

36 Data Dependent Activity
Consider an 8b counter What is activity, a, for: Low bit? High bit? Assuming random inputs (no glitching) Activity at output of nand4? Activity at output of xor4? Penn ESE370 Fall DeHon

37 Total Power Ptot = Pdyn + Psc + Pdyn Penn ESE370 Fall DeHon

38 Slow Down What happens to power contributions as reduce clock frequency? What suggest about Vth? Penn ESE370 Fall DeHon

39 Reduce V What happens as reduce V? Delay? Energy? Static Switching
Penn ESE370 Fall DeHon

40 Reduce V (no physical scale)
tgd=Q/I=(CV)/I V S×V Id=(mCOX/2)(W/L)(Vgs-VTH)2 Id  S2×Id tgd  tgd /S Penn ESE370 Fall DeHon

41 Observe Ignoring leakage Penn ESE370 Fall DeHon

42 Energy vs. Power? What do we care about? Battery operated devices?
Desktops? Penn ESE370 Fall DeHon

43 Admin Project Baseline done SPICE Power Measurement 5.5.4
List of ideas to accelerate done? Penn ESE370 Fall DeHon

44 Ideas Three components of power
Static Short-circuit Charging aCV2f dependence for short-circuit, charging Energy-Delay tradeoff: Et2 Penn ESE370 Fall DeHon


Download ppt "Day 16: September 15, 2010 Energy and Power"

Similar presentations


Ads by Google