Download presentation
Presentation is loading. Please wait.
1
Glyco-challenged Glyco-literate
GlycoTest Range: Avg: 75 ; Mean:81 Glyco-challenged Glyco-literate
2
GlycoAnalytics Complex Carbohydrate Research Center,
Department of Biochemistry & Molecular Biology University of Georgia
5
Compositional Analysis Using Derivitized Glycans
often done by GLC Separation —Azadi Summer Course
6
HPAE-PAD Detection of Monosaccharides
7
GLC/GC Analysis --Also taught in Azadi’s Summer Courses
8
Tandem Mass Spectrometry-Based Approaches
For the Characterization of Glycopeptides NCRR Biomedical Glycomics
9
Biological/Technical Challenges
Glycosylation is a non-template driven process Many building blocks are isomers/epimers Not one single linkage of building blocks to one another Majority of glycans are non-linear (branched) Free glycans are extremely hydrophilic Microheterogeneity is the norm on glycoproteins Glycosidic linkage to amino acid is labile
10
Glycan Capping Reactions
11
All MS do one thing: Measure m/z
12
Site Mapping and Characterization -Glycans, N-linked Sites, O-linked Sites
Q N G S W E K A F S Y D P R S T P G L C I T I H C A N G R E S S M K Q N V S L
13
Glycan Release/Permethylation of Glycans
Trypsin digestion of protein Enzymatic release of N-glycans b-elimination for O-linked- additon of NaOH resulting in release of glycan structure from hydroxyl of Ser or Thr Reduction with NaBH4 prevents re-attaching of glycan Permethylation of glycan- OH→OMe Addition of MeI Analyzed permethylated glycans by applying MSn fragmentation as needed to completely determine the structure J. Am. Chem. Soc. (2003) 125(52):
14
Glycan Analysis
15
LC-nSI/MS/MS or Direct Infusion
Buffer A Buffer B HPLC Capillary Column Peptide mixtures LTQ ion trap Mass spectrometer Protein Peptides sequenced, Proteins Identified 1. Enolase EEALDLIVDAIK 2. P yruvate kinase NPTVEVELTTEK 3. Hexokinase 4. Hypusine 5. BMH1 IEDDPFVFLEDTDDIFQK APEGELGDSLQTAFDEGK QAFDDAIAELDTLSEESYK Database Nucleotide ESTs Predicted MS/MS TurboSEQUEST Cross-Correlation Comparison Automated MS/MS MS 2 5 M a r 3 1 # 8 R T : . 9 4 A V N L 6 E 7 + c S I F u l m s [ - ] 542.5 1082.7 729.5 1486.1 CID MS/MS
16
Permethylated Glycans from wildtype Drosophila embryos
18
POMGnT1 appears to be essential for O-Man Extension
20
GRITs..CCRC way
23
Relative quantification between 2 samples
of released and permethylated N-glycans via isotope labeling with light/heavy iodomethane
25
+1 Dalton J. Proteome Res., 2009, 8 (8), pp 3816–3823
26
O-linked Glycan Mixture N-linked Glycan Mixture
Amide-15N L-glutamine “GLN-15” Amide-14N L-glutamine “Gln-14” Light Medium Heavy Medium Harvest & Combine Mixed Protein Powder Homogenization and delipidation Peptide Mixture O-linked Glycan Mixture N-linked Glycan Mixture Tryptic digestion C18 reverse phase PNGase F digestion -elimination Permethylated Glycans Permethylation Deionization Characterization by MS/MS Quantification by Full MS Mass Spectrometry Heavy GLN-15 Light Gln-14
31
: Figure 5 A. [M+Na]+: 1705.862 and 1706.854 m/z (mono) * hDE = 1.74
1707 1708 1709 1710 1711 1712 1713 1714 10 20 30 40 50 60 70 80 90 100 m/z Relative Abundance : * hES hDE = 1.74 ----- Meeting Notes (11/23/11 15:08) ----- add transition slide before
32
: Figure 5 B. [M+Na]+: 1432.741 and 1435.735 m/z (mono) hDE = 0.23 hES
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 10 20 30 40 50 60 70 80 90 100 m/z Relative Abundance hES hDE = 0.23 : *
33
(Ratio=hDE/hESCs) (Prevalence > 1%)
Table 3: Relative quantification of O-glycan expression levels in hESCs and hDE using IDAWG (Ratio=hDE/hESCs) (Prevalence > 1%) Structure m/z Prevalence Ratio CV 983.52 21.78% 1.11 20.20% 20.22% 1.09 14.42% 17.60% 2.64 30.21% 895.46 8.20% 0.87 13.56% and 534.29 6.76% 1.04 17.20% 5.81% 0.64 61.95% 4.93% 2.54 29.48% 4.70% 0.41 37.70% 2.12% 1.75 49.39% 1.99% 0.99 29.78% 779.42 1.03% 0.79 26.42% ----- Meeting Notes (11/23/11 15:08) ----- cv?
34
Pulse-Chase experiment designed for dynamic IDAWG
Heavy Media Light Media X 4 X 3 X 2 0 hr 12 hr 24 hr 36 hr X 1 Harvest Release N- and O-linked glycans Permethylation Light Media Light Media Complete Labeling X 1 X 1
35
0hr-- >95% Heavy Relative Abundance m/z 1259.622 1260.626 1261.628
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 m/z Relative Abundance
36
6hr Relative Abundance m/z 1259.626 1260.629 1258.631 1257.633
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 m/z Relative Abundance
37
12hr Relative Abundance m/z 1259.622 1257.629 1258.629 1256.630
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 m/z Relative Abundance
38
24hr Relative Abundance m/z 1256.630 1257.631 1258.631 1259.621
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 m/z Relative Abundance
39
36hr Relative Abundance m/z 1256.629 1257.630 1258.631 1259.622
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 m/z Relative Abundance
40
Proportion of remodeling at 50% degradation time (%)
50% degradation time and proportion of remodeling at 50% degradation time for 9 major O-glycans Structure 50% degradation time (hours) Proportion of remodeling at 50% degradation time (%) Rep1 Rep2 18.6 19.4 1.6 1.1 20.7 22.6 0.0 7.7 8.4 16.2 15.6 9.0 9.7 14.9 14.1 26.8 25.4 20.4 18.1 16.9 21.2 18.4 19.8 9.3 21.3 25.3 21.5 22.1 27.9 27.0 ----- Meeting Notes (11/23/11 15:28) ----- o-man short half life no difference in terms of half life but remodeling for non and sialyted
41
Site Mapping and Characterization -Glycans, N-linked Sites, O-linked Sites
Q N G S W E K A F S Y D P R S T P G L C N I T I H C A G R E S S M K Q N V S L Focus on Site-Mapping
42
PNGase F Treatment and N-linked Glycosylation Site-mapping
N-X-S/T Secreted Proteins from Adipocytes (insulin responsive vs insulin resistant) Sulfated glycoprotein 1 precursor (SGP-1) gi| (K)TVVTEAGNLLKDN#ATQEEILHYLEK (K)FSELIVNN#ATEELLVK (K)LVLYLEHNLEKN#STKEEILAALEK lipoprotein lipase gi| (R)TPEDTAEDTCHLIPGLADSVSNCHFN#HSSK vimentin gi| (R)QVQSLTCEVDALKGTN#ESLER Follistatin-related protein 1 precursor gi| (K)GSN#YSEILDK Haptoglobin gi| (K)VVLHPN#HSVVDIGLIK (K)NLFLN#HSETASAK (K)CVVHYEN#STVPEKK Adipsin gi|673431 (K)LSQN#ASLGPHVRPLPLQYEDK Decorin gi| (R)ISDTN#ITAIPQGLPTSLTEVHLDGNK Hemopexin gi| (R)SWSTVGN#CTAALR 56 proteins with 83 N-linked sites
43
N-linked Site Mapping from ConA-enriched glycopeptides
from Drosophila heads--272 sites mapped from 197 Proteins Pileup of the 272 N-linked Sites to Determine Consensus beyond N-X-S/T Concerns: PNGaseF/A, Deamidation, C-terminal O-18
44
PGIP N-linked Site Mapping with PNGase F/A
PNGase F (red = coverage) 3 sites identified DLCNPDDKKV LLQIKKAFGD PYVLASWKSD TDCCDWYCVT CDSTTNRINS LTIFAGQVSG QIPALVGDLP YLETLEFHKQ PNLTGPIQPA IAKLKGLKSL RLSWTNLSGS VPDFLSQLKN LTFLDLSFNN LTGAIPSSLS ELPNLGALRL DRNKLTGHIP ISFGQFIGNV PDLYLSHNQL SGNIPTSFAQ MDFTSIDLSR NKLEGDASVI FGLNKTTQIV DLSRNLLEFN LSKVEFPTSL TSLDINHNKI YGSIPVEFTQ LNFQFLNVSY NRLCGQIPVG GKLQSFDEYS YFHNRCLCGA PLPSCK PNGase A (red=coverage) 7 sites identified DLCNPDDKKV LLQIKKAFGD PYVLASWKSD TDCCDWYCVT CDSTTNRINS LTIFAGQVSG QIPALVGDLP YLETLEFHK Q PNLTGPIQPA IAKLKGLKSL RLSWTNLSGS VPDFLSQLKN LTFLDLSFNN LTGAIPSSLS ELPNLGALRL DRNKLTGHIP ISFGQFIGNV PDLYLSHNQL SGNIPTSFAQ MDFTSIDLSR NKLEGDASVI FGLNKTTQIV DLSRNLLEFN LSKVEFPTSL TSLDINHNKI YGSIPVEFTQ LNFQFLNVSY NRLCGQIPVG GKLQSFDEYS YFHNRCLCGA PLPSCK High Stringency Filter
45
Cell May 28;141(5): Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Zielinska DF, Gnad F, Wiśniewski JR, Mann M. >6,000 Sites Mapped from Mouse Organs >99% of Sites Match N-X-S/T(C), X is not Pro, ~1% of sites used Cys in place of S/T Small percentage of sites (<1%) were N-X-V or NG (Real of False-Positives???)
46
O-Glycopeptides GalNAc Man Fuc Glc Gal Xyl GlcNAc Ser/Thr Ser/Thr
b Ser/Thr Ser/Thr Ser/Thr Ser/Thr Hyl Ser Hyp Ser/Thr No PNGaseF equivalent for O-Glycans O-Glycanse has very restricted specificity
49
--Can enrich glycopeptides before --Can map via the dehydro-amino acid
Glycan DTT CH2 O Michael Addition H CH2 H b-Elimination CH2 C C C N H C N H C DTT N H C OH- O O O --Can enrich glycopeptides before --Can map via the dehydro-amino acid --Can enrich the peptides after
50
Concerns: Specificity, efficiency, recovery
Differential isotopic tagging of both cysteine and post-translationally modified ser/thr through b-elimination/Michael addition with light (d0) and heavy (d6) DTT. O ICH2 C NH2 S H CH2 b-Elimination C N H C C N H O CH2 DTT (d0 or d6) CH2 Michael Addition O C Alkylated Cysteine N H C Light DTT (d0) or Heavy DTT (d6) O OH OH (GlcNAc or phosphate) Dehydroalanine (or HSCH2CHCHCH2SH HSCd2CdCdCd2SH O OH OH b-Elimination H CH2 C N H C O O-GlcNAc or O-phosphate Modified Serine (or threonine) Concerns: Specificity, efficiency, recovery
51
Quantifying Peptides with D0- and D6-DTT
Theoretical: 1 to 1 ; Experimental 1 to 0.98, 1 fmol scale
53
Site Mapping and Characterization -Where we want to be!
Q N G S W E K A F S Y D P R S T P G L C N I T I H C A G R E S S M K Q N V S L (75%) (25%)
54
Alpha-Dystroglycan (O-Man/O-GalNAc-initiated glycans)
55
N- and O-linked glycan structures determined by
“Total Ion Mapping” with manual interpretation Full MS and TIM spectra were obtained for mouse ES, EB, and ExE Spectra analyzed, glycans identified, and quantitated Directed MSn analysis performed as necessary to clarify structures Expressed as “% of total” glycan profile Method described in: Aoki, K., Perlman, M., Lim, J. M., Cantu, R., Wells, L., and Tiemeyer, M. (2007) J Biol Chem 282,
56
Figure 2. Released O-Man and O-GalNAc linked glycans
57
Identification of Glycans using TIM-MS
58
Pseudo Neutral Loss Activated Data Dependant MS3 for Glycopeptide Mapping
MS Survey Scan MS survey scan MS/MS scan Neutral loss? No Yes Top N peaks? MS/MS/MS scan SEQUEST ID If we have purified protein and glycomics data
59
Figure 3. Fragmentation of O-GalNAc a-DG glycopeptide
63
Assignment of Glycan Structure by Residue
JBC 2010, 285:24882
64
Assignment of Modified Glycopeptide
Assignment of the phosphorylated trisaccharide structure to a specific glycopeptide of alpha-dystroglycan using MSn approaches. Displayed is a MS3 spectra demonstrating the presence of the phoshotrisaccharide . Science :88
65
Another O-Glycan site mapping solution
High Collision Dissociation (HCD) Fragmentation Generating oxonium ions Electron Transfer Dissociation (ETD) Fragmentation Targeting Modified peptides Peptide Sequencing and Modification Site Mapping JPR :4088
66
HCD spectra PSVPV S GSAPGR GlcNAc HexNAc-66+1, 138.05 b7, 827.43
y9-HHexNAc, b3-H2O, PSVPV S GSAPGR y6 y7 GlcNAc MH-HexNAc+2, HexNAc+1, y9-HexNAc+2, MH-HexNAc, HexNAc-H2O+1, b2-H2O, y6, y7, S+HexNAc 290.12m/z HexNAc-78+1, b3, y7-HexNAc, y10-HexNAc+2, HexNAc-60+1, y9, y10-HexNAc, y8-HexNAc, y11-HexNAc, y3, MH+2, y5, y10, y11, MH,
67
D HCD (zoomed in) b2, 154.548 201.858 PGGSTPVSSANMM 138.054 [C7H8O2N]+
HexNAc+1 [C8H14O5N]+ [C8H12O4N]+ [C8H10O3N]+ [C6H10O3N]+ [C7H8O2N]+ [C6H8O2N]+ HCD (zoomed in) D PGGSTPVSSANMM GlcNAc b2, 110 130 150 170 190 210 230 250 m/z 10 20 30 40 50 60 70 80 90 100 Relative Abundance
68
ETD spectra PSVPV S GSAPGR GlcNAc MH+2, 657.51 MH, 1314.58
z7 z6 MH-H2O, z6, z7, S+HexNAc 290.01m/z z5, c11, z10, z10-H2O, z4, c11-HexNAc, z7-HexNAc, z11, z8, y11, y9, y8+3, y2, b6,
69
Simultaneous O-Man and O-GalNAc Analysis by ETD MS/MS
Z3 Z4 Z5^ Z7* Z6^ Z8* Z9 Z10 (Z10) C8 +3, m/z +1, m/z Ac-IRT*T*T^S^GVPR-NH2 * Man ^ GalNAc
70
Take Home Points Quantitative Glycomic Platforms Exist
Automation of Analysis for HTG well under development Glycopeptide analysis can use glycomics and proteomics to confine the search space and for structural determination Pseudo-NL MSn approaches work for direct glycopeptide analysis ExD (ETD, ECD, etc.) are very promising for glycopeptides HCD-triggered ETD approaches for mining deep and can aid in confident assignment
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.