Presentation is loading. Please wait.

Presentation is loading. Please wait.

of multispecies edge plasmas

Similar presentations


Presentation on theme: "of multispecies edge plasmas"— Presentation transcript:

1 of multispecies edge plasmas
Kinetic modeling of multispecies edge plasmas Konstantin Matyash Ph. D. work at Max-Planck IPP, Stellarator theory division, Edge Modeling Group since June 13, 2000 Scientific supervisor: Dr. Ralf Schneider Academic Supervisor: Prof. Dr. Jürgen Nührenberg

2 Max-Planck-Institut für Plasmaphysik, EURATOM Association
Outline "The goal of scientific computing is insight, not numbers." Richard Hamming Motivation why? Multispecies Particle-in-Cell code with Monte-Carlo Collisions (PIC-MCC) how? Applications of the PIC model what? Summary

3 Motivation: hydrocarbon plasmas in industry and fusion
Max-Planck-Institut für Plasmaphysik, EURATOM Association Motivation: hydrocarbon plasmas in industry and fusion carbon films deposition for industry tritium codeposition in fusion major topics: chemical erosion tritium codeposition graphite tile P. Coad, JET

4 Max-Planck-Institut für Plasmaphysik, EURATOM Association
Particle simulations 1943 – Hartree, Nicolson: orbits of about 30 interacting electrons, desk calculator (Pentium) (Pentium Pro) (Merced) P5 P6 P7 4004 8086 80286 80386 80486

5 Particle-in-Cell simulation
Max-Planck-Institut für Plasmaphysik, EURATOM Association Particle-in-Cell simulation

6 3D3V PIC-MCC multispecies code
Max-Planck-Institut für Plasmaphysik, EURATOM Association 3D3V PIC-MCC multispecies code  multispecies: electrons, ions, neutrals  extension to full 3-D  ECR heating model with feed-back control loop simple plasma-surface interaction model  parallelization for Linux-cluster (MPI)  MCC collisions

7 Capacitive RF discharge
Max-Planck-Institut für Plasmaphysik, EURATOM Association Capacitive RF discharge Collaboration with IEP5, Bochum University (Ivonne Möller) ne = 1010 cm-3, nH2 = 9.2·1014 cm-3, nCH4 = 7·1014 cm-3, p = Torr (11 Pa) ne ~ cm-3 nn ~ cm-3 fRF = MHz potential

8 Capacitive RF discharge
Max-Planck-Institut für Plasmaphysik, EURATOM Association Capacitive RF discharge electron and CH4+ ion density CH4+ ion energy distribution electrons reach electrode only during sheaths collapse energetic ions at the wall due to acceleration in the sheath

9 Capacitive RF discharge
Max-Planck-Institut für Plasmaphysik, EURATOM Association Capacitive RF discharge electron velocity distribution electron-impact ionization rate energetic electrons oscillate between sheaths ionization spreads over the bulk

10 Fermi acceleration due to periodic force
Max-Planck-Institut für Plasmaphysik, EURATOM Association Fermi acceleration due to periodic force Cosmic rays - particles with energies eV Fermi proposal – acceleration due to collisions with moving magnetic fields E. Fermi: On origin of the cosmic radiation, Phys. Rev. 75 (1949) 116 Ulam problem – acceleration due to collisions with regularly oscillating wall S.M. Ulam: 4th Berkeley Symp. on Math. Stat. and Probability. University of California Press 3 (1961) 315 Fermi acceleration due to collisions with regularly oscillating boundary

11 Fermi acceleration due to periodic force
Max-Planck-Institut für Plasmaphysik, EURATOM Association Fermi acceleration due to periodic force Simplified mapping of the Ulam problem M.A. Lieberman and A.J. Lichtenberg, Phys. Rev. A 5 (1972) 1852 - ball velocity before n-th collision - phase of the wall oscillation during collision Phase space for Stochasticity criterion stochastic sea with adiabatic islands, limited above by a regular region

12 Capacitive RF discharge
Max-Planck-Institut für Plasmaphysik, EURATOM Association Capacitive RF discharge electron energy probability function simulation experiment V.A. Godyak, et al., Phys. Rev. Lett., 65 (1990) 996. bi-maxwellian distribution due to stochastic heating

13 Capacitive RF discharge, high pressure
Max-Planck-Institut für Plasmaphysik, EURATOM Association Capacitive RF discharge, high pressure ne = 1010 cm-3, nH2 = 9.2·1015 cm-3, nCH4 = 7·1015 cm-3, p = 0.85 Torr (110 Pa) potential electron and CH4+ ion density field reversal after sheath collapse ionization within sheaths

14 Capacitive RF discharge, high pressure
Max-Planck-Institut für Plasmaphysik, EURATOM Association Capacitive RF discharge, high pressure electron velocity distribution electron-impact ionization rate energetic electrons only in sheaths ionization localized in the sheaths

15 Capacitive RF discharge, high pressure
Max-Planck-Institut für Plasmaphysik, EURATOM Association Capacitive RF discharge, high pressure electron-impact ionization rate simulation 653.3 nm excitation rate experiment C.M.O. Mahony et al., Appl. Phys. Lett. 71 (1997) 608. double peak structure due to sheath reversal

16 Dusty (complex) plasmas higher electron mobility
Max-Planck-Institut für Plasmaphysik, EURATOM Association Dusty (complex) plasmas dust particle q ~ 104e R ~ 10-6 m M ~ g Lower electrode negative charge due to higher electron mobility levitation in strong sheath electric field

17 Experimental investigations of complex plasmas
Max-Planck-Institut für Plasmaphysik, EURATOM Association Experimental investigations of complex plasmas top view side view G E Morfill et al, Plasma Phys. Control. Fusion 44 (2002) B263

18 PIC simulation: plasma crystal (2D)
Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: plasma crystal (2D) dust particle as additional species in PIC scheme supersonic ion flow lower electrode formations of the dust molecules due to focusing of the ion flow

19 PIC simulation: plasma crystal (2D)
Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: plasma crystal (2D) potential potential determined by sheath and dust

20 PIC simulation: plasma crystal (2D) wake field effects due to ion flow
Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: plasma crystal (2D) vertical ion velocity horizontal ion velocity wake field effects due to ion flow

21 PIC simulation: plasma crystal (2D)
Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: plasma crystal (2D) ion density electron temperature focusing of the ion flow, “dust molecules” electron heating in the dust layer

22 PIC simulation: plasma crystal - full 3D
Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: plasma crystal - full 3D top view quasi-2D structure due to vertical alignment of horizontal layers

23 Structural analysis of plasma crystal
Max-Planck-Institut für Plasmaphysik, EURATOM Association Structural analysis of plasma crystal simple hexagonal structure with defects J. B. Pieper, J. Goree, R.A. Quinn, Phys. Rev. 54 (1996) 5636

24 Plasma crystal under microgravity on ISS
Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma crystal under microgravity on ISS void formed in the middle of discharge under microgravity conditions Sergey Krikalev with ''PKE Nefedov'' onboard of ISS, March 2001

25 PIC simulation: plasma crystal under zero gravity
Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: plasma crystal under zero gravity 4 8 1 2 Y , 1 6 D 2 2 4 2 8 3 2 4 8 1 2 1 6 X , D void formation due to ion drag force

26 Particle-in-Cell code applications
Max-Planck-Institut für Plasmaphysik, EURATOM Association Particle-in-Cell code applications ECR plasma Parasitic plasma under divertor roof baffle ne ~ 1010 cm-3 nn ~ 1014 cm-3 Te ~ 2 eV Plasma detected below roof baffle of Div IIb Typical parameters: 4*108 < ne < 7*1011 cm-3 5 < Te < 15 eV Scaling: ne ~ Radiation2.7*Particles_flux0.7 Plasma originated by photoionisation or photoeffect ! Recycling in SOL ne ~ 1013 cm-3 nn ~ 1014 cm-3 Te ~ 10 eV

27 Collaboration projects
Max-Planck-Institut für Plasmaphysik, EURATOM Association Collaboration projects EVDF modeling for RF discharge in a CH4 - H2 mix (I. Möller, Bochum University) PIC simulation of a plasma thruster (F. Taccogna, Bari University, Italy)

28 Collaboration projects
Max-Planck-Institut für Plasmaphysik, EURATOM Association Collaboration projects Neutral species modeling for RF discharge in a CH4 - H2 mix (A. Serdyuchenko, Bochum University) Probe floating potential dependence on magnetic field tilt (B. Koch, IPP, Berlin)

29 Collaboration projects
Max-Planck-Institut für Plasmaphysik, EURATOM Association Collaboration projects Simulation of ion energy distribution (V. Vartolomei, Greifswald University) Simulation of rotating dust cloud (M. Fröhlich, Greifswald University)

30 3D electrostatic PIC-MCC code for multispecies plasmas
 capacitive RF discharge K. Matyash and R. Schneider, Contributions to Plasma Physics, in press  dusty plasma, plasma crystal K. Matyash and R. Schneider, Contributions to Plasma Physics, in press  ECR plasma in Plato: +0D chemical kinetic model, B2-Eirene fluid model K. Matyash, R. Schneider, A. Bergmann, W. Jacob, U. Fantz and P. Pecher, J. Nucl. Mater (2003) 434 K. Matyash, R. Schneider, A. Bergmann, W. Jacob, U. Fantz, P. Pecher, Czech. J. of Phys. 52 D (2002) 515  scrape-off layer plasma R. Schneider, X. Bonnin, N. McTaggart, A. Runov, M. Borchardt, J. Riemann, A. Mutzke, K. Matyash, H. Leyh, M. Warrier, D. Coster, W. Eckstein, R. Dohmen, Contributions to Plasma Physics, in press  photon created plasma  collaboration projects


Download ppt "of multispecies edge plasmas"

Similar presentations


Ads by Google