Presentation is loading. Please wait.

Presentation is loading. Please wait.

Laplace Transforms.

Similar presentations


Presentation on theme: "Laplace Transforms."โ€” Presentation transcript:

1 Laplace Transforms

2 Definition Given an integrable function ๐‘“: โ„ โ‰ฅ0 โ†’โ„ we define the Laplace Transform of ๐‘“ ๐น=โ„’๐‘“ to be the function ๐น:๐ทโ†’โ„ ๐น ๐‘  = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘“ ๐‘ก ๐‘‘๐‘ก Where ๐ท, the domain of โ„’๐‘“, is the domain of ๐‘  for which the integral converges.

3 Example Compute the Laplace Transform of the function ๐‘“ ๐‘ก =1
Solution Let ๐น=โ„’๐‘“ be the Laplace Transform, and by definition we have: ๐น ๐‘  = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘“ ๐‘ก ๐‘‘๐‘ก = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก = โˆ’ 1 ๐‘  ๐‘’ โˆ’๐‘ ๐‘ก ๐‘ก=0 ๐‘ก=โˆž = 1 ๐‘  Thus we have our first Laplace Transform formula: โ„’ 1 = 1 ๐‘ 

4 Example Compute the Laplace Transform of ๐‘“ ๐‘ก = ๐‘’ ๐‘˜๐‘ก
Solution โ„’ ๐‘’ ๐‘˜๐‘ก = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘’ ๐‘˜๐‘ก ๐‘‘๐‘ก = 0 โˆž ๐‘’ ๐‘˜โˆ’๐‘  ๐‘ก ๐‘‘๐‘ก = 1 ๐‘˜โˆ’๐‘  ๐‘’ ๐‘˜โˆ’๐‘  ๐‘ก ๐‘ก=0 ๐‘กโ†’โˆž = 1 ๐‘ โˆ’๐‘˜ , ๐‘ >๐‘˜ โ„’ ๐‘’ ๐‘˜๐‘ก = 1 ๐‘ โˆ’๐‘˜

5 Example Suppose ๐‘“ is a differentiable function on โ„ โ‰ฅ0 whose Laplace Transform ๐น=โ„’๐‘“ is known. Then compute the Laplace Transform of the derivative ๐‘“โ€ฒ. Solution Integrate by parts: ๐‘ข= ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ฃ= ๐‘“ โ€ฒ ๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ข=โˆ’๐‘  ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก ๐‘ฃ=๐‘“(๐‘ก) โ„’ ๐‘“ โ€ฒ ๐‘ก = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘“ โ€ฒ ๐‘ก ๐‘‘๐‘ก = ๐‘’ โˆ’๐‘ ๐‘ก ๐‘“ ๐‘ก ๐‘ก=0 ๐‘กโ†’โˆž + 0 โˆž ๐‘  ๐‘“ ๐‘ก ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก =โˆ’๐‘“ 0 +๐‘  โ„’ ๐‘“ ๐‘ก =โˆ’๐‘“ 0 +๐‘  ๐น(๐‘ ) โ„’ ๐‘“ โ€ฒ ๐‘ก =๐‘  ๐น ๐‘  โˆ’๐‘“(0) where ๐น=โ„’๐‘“

6 Example Compute the Laplace Transform of the second derivative ๐‘“ โ€ฒโ€ฒ ๐‘ก Solution Recall from the previous problem that โ„’ ๐‘” โ€ฒ ๐‘ก =๐‘” 0 +๐‘  โ„’ ๐‘” ๐‘ก Let ๐‘”=๐‘“โ€ฒ and this formula becomes โ„’ ๐‘“ โ€ฒโ€ฒ ๐‘ก =โˆ’ ๐‘“ โ€ฒ 0 +๐‘  โ„’ ๐‘“ โ€ฒ ๐‘ก =โˆ’ ๐‘“ โ€ฒ 0 +๐‘  โˆ’๐‘“ 0 +๐‘  ๐น ๐‘  = ๐‘  2 ๐น ๐‘  โˆ’๐‘ ๐‘“ 0 โˆ’๐‘“โ€ฒ(0) โ„’ ๐‘“ โ€ฒโ€ฒ ๐‘ก = ๐‘  2 ๐น ๐‘  โˆ’๐‘ ๐‘“ 0 โˆ’๐‘“โ€ฒ(0)

7 Example Prove that the Laplace Transform โ„’ is a linear operator: for constants ๐‘Ž and ๐‘ and functions ๐‘“ and ๐‘”: โ„’ ๐‘Ž๐‘“ ๐‘ก +๐‘๐‘” ๐‘ก =๐‘Žโ„’ ๐‘“ ๐‘ก ++๐‘โ„’ ๐‘” ๐‘ก Solution โ„’ ๐‘Ž๐‘“ ๐‘ก +๐‘๐‘” ๐‘ก = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘Ž๐‘“ ๐‘ก +๐‘๐‘” ๐‘ก ๐‘‘๐‘ก =๐‘Ž 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘“ ๐‘ก ๐‘‘๐‘ก +๐‘ 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘” ๐‘ก ๐‘‘๐‘ก =๐‘Žโ„’ ๐‘“ ๐‘ก +๐‘โ„’ ๐‘” ๐‘ก โ„’ ๐‘Ž๐‘“ ๐‘ก +๐‘๐‘” ๐‘ก =๐‘Ž๐น ๐‘  +๐‘๐บ(๐‘ )

8 Example Compute the Laplace Transforms of ๐‘“ ๐‘ก = sin ๐œ”๐‘ก and ๐‘” ๐‘ก = cos ๐œ”๐‘ก Solution โ„’ sin ๐œ”๐‘ก = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก sin ๐œ”๐‘ก ๐‘‘๐‘ก = โˆ’ ๐‘’ โˆ’๐‘ ๐‘ก ๐œ” cos ๐œ”๐‘ก +๐‘  sin ๐œ”๐‘ก ๐‘  2 + ๐œ” 2 ๐‘ก=0 ๐‘กโ†’โˆž = ๐œ” ๐‘  2 + ๐œ” 2 = ๐‘’ โˆ’๐‘ ๐‘ก โˆ’๐‘  cos ๐œ”๐‘ก +๐œ” sin ๐œ”๐‘ก ๐‘  2 + ๐œ” 2 ๐‘ก=0 ๐‘กโ†’โˆž โ„’ cos ๐œ”๐‘ก = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก cos ๐œ”๐‘ก ๐‘‘๐‘ก = ๐‘  ๐‘  2 + ๐œ” 2 โ„’ sin ๐œ”๐‘ก = ๐œ” ๐‘  2 + ๐œ” 2 โ„’ cos ๐œ”๐‘ก = ๐‘  ๐‘  2 + ๐œ” 2

9 Example (Power Rule for Laplace Transforms)
Compute the Laplace Transform of ๐‘“ ๐‘ก = ๐‘ก ๐‘› for positive integers ๐‘›. Solution Integrate by parts: ๐‘ข= ๐‘ก ๐‘› ๐‘‘๐‘ฃ= ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ข=๐‘› ๐‘ก ๐‘›โˆ’1 ๐‘ฃ=โˆ’ 1 ๐‘  ๐‘’ โˆ’๐‘ ๐‘ก โ„’๐‘“ ๐‘  = 0 โˆž ๐‘ก ๐‘› ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก = โˆ’ 1 ๐‘  ๐‘ก ๐‘› ๐‘’ โˆ’๐‘ ๐‘ก ๐‘ก=0 ๐‘ก=โˆž + ๐‘› ๐‘  0 โˆž ๐‘ก ๐‘›โˆ’1 ๐‘’ โˆ’๐‘ ๐‘ก = ๐‘› ๐‘  โ„’ ๐‘ก ๐‘›โˆ’1 (๐‘ ) This is a recursive formula for โ„’ ๐‘ก ๐‘› in terms of โ„’ ๐‘ก ๐‘›โˆ’1 . Since โ„’ 1 = 1 ๐‘  , we conclude that โ„’ ๐‘ก ๐‘› = ๐‘›! ๐‘  ๐‘›+1 (this formula can be proved by induction)

10 The last several slides were preparation.
Now an application, to give a taste of how the Laplace Transform is used.

11 Example Use Laplace Transforms to solve the differential equation/initial value problem ๐‘ฆ โ€ฒโ€ฒ +3๐‘ฆ= ๐‘’ โˆ’๐‘ก , ๐‘ฆ 0 =1, ๐‘ฆ โ€ฒ 0 =2 Solution We begin by taking the Laplace Transform of both sides, letting ๐‘Œ=โ„’๐‘ฆ โ„’ ๐‘ฆ โ€ฒโ€ฒ +3๐‘ฆ =โ„’ ๐‘’ โˆ’๐‘ก โ„’ ๐‘ฆ โ€ฒโ€ฒ +3โ„’ ๐‘ฆ = 1 ๐‘ +1 โ„’ sin ๐œ”๐‘ก = ๐œ” ๐‘  2 + ๐œ” 2 โ„’ cos ๐œ”๐‘ก = ๐‘  ๐‘  2 + ๐œ” 2 ๐‘  2 ๐‘Œ ๐‘  โˆ’๐‘ ๐‘ฆ 0 โˆ’๐‘ฆโ€ฒ(0) +3๐‘Œ ๐‘  = 1 ๐‘ +1 ๐‘Œ(๐‘ )= ๐‘  2 +3๐‘ +3 ( ๐‘  2 +3)(๐‘ +1) Solve for ๐‘Œ(๐‘ ). Recall ๐‘ฆ 0 =1, ๐‘ฆ โ€ฒ 0 =2: โ„’ ๐‘’ ๐‘˜๐‘ก = 1 ๐‘ โˆ’๐‘˜ Break apart the right-hand-side with partial fractions and simplify: ๐‘Œ ๐‘  = 1/4 ๐‘ +1 + 9/4 ๐‘  /4 ๐‘  ๐‘  2 +3 = ๐‘ โˆ’(โˆ’1) ๐‘  ๐‘  ๐‘  2 +3 * ๐‘ฆ ๐‘ก = 1 4 ๐‘’ โˆ’๐‘ก sin ๐‘ก cos ๐‘ก Conclude that

12 Laplace Transforms allow us to work more easily with โ€œuglyโ€ piecewise-defined functions.

13 Example Compute the Laplace Transform of the Heaviside Step Function at ๐‘Ž ๐‘ข ๐‘Ž ๐‘ก = 0 0โ‰ค๐‘ก<๐‘Ž 1 ๐‘Žโ‰ค๐‘ก Solution โ„’ ๐‘ข ๐‘Ž ๐‘ก = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘ข ๐‘Ž ๐‘ก ๐‘‘๐‘ก = 0 ๐‘Ž ๐‘’ โˆ’๐‘ ๐‘ก 0 ๐‘‘๐‘ก + ๐‘Ž โˆž ๐‘’ โˆ’๐‘ ๐‘ก 1 ๐‘‘๐‘ก = ๐‘’ โˆ’๐‘Ž๐‘  ๐‘  โ„’ ๐‘ข ๐‘Ž ๐‘ก = ๐‘’ โˆ’๐‘Ž๐‘  ๐‘ 

14 Example (t-Shift-Rule for Laplace Transforms) Suppose we know the Laplace Transform โ„’ ๐‘“ ๐‘ก =๐น(๐‘ ) of a function ๐‘“. Find the Laplace Transform of the shifted function (where ๐‘Ž is a number ๐‘Žโ‰ฅ0) ๐œ ๐‘Ž ๐‘“ ๐‘ก = ๐‘ข ๐‘Ž ๐‘ก ๐‘“ ๐‘กโˆ’๐‘Ž Solution โ„’ ๐œ ๐‘Ž ๐‘“(๐‘ก) = 0 โˆž ๐œ ๐‘Ž ๐‘“(๐‘ก) ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก = ๐‘Ž โˆž ๐‘“ ๐‘กโˆ’๐‘Ž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก Substitute ๐‘ข=๐‘กโˆ’๐‘Ž, ๐‘‘๐‘ข=๐‘‘๐‘ก = 0 โˆž ๐‘“ ๐‘ข ๐‘’ โˆ’๐‘  ๐‘ข+๐‘Ž ๐‘‘๐‘ข = ๐‘’ โˆ’๐‘Ž๐‘  0 โˆž ๐‘“ ๐‘ข ๐‘’ โˆ’๐‘ ๐‘ข ๐‘‘๐‘ข = ๐‘’ โˆ’๐‘Ž๐‘  ๐น(๐‘ ) โ„’ ๐œ ๐‘Ž ๐‘“ ๐‘ก = ๐‘’ โˆ’๐‘Ž๐‘  ๐น(๐‘ ) Where ๐œ ๐‘Ž ๐‘“ ๐‘ก = ๐‘ข ๐‘Ž ๐‘ก ๐‘“ ๐‘กโˆ’๐‘Ž

15 Example Compute the Laplace Transform of the floor function ๐‘“ ๐‘ก = ๐‘ก Solution Notice that we can write ๐‘“ ๐‘ก = ๐‘›=1 โˆž ๐‘ข ๐‘› ๐‘ก Therefore โ„’๐‘“ ๐‘  = ๐‘›=1 โˆž ๐‘’ โˆ’๐‘›๐‘  ๐‘  = 1 ๐‘  ๐‘›=0 โˆž ๐‘’ โˆ’๐‘  ๐‘’ โˆ’๐‘  ๐‘› = 1 ๐‘  ๐‘’ โˆ’๐‘  1โˆ’ ๐‘’ โˆ’๐‘  Here we used the Geometric Series formula ๐‘›=0 โˆž ๐‘Ž ๐‘Ÿ ๐‘› = ๐‘Ž 1โˆ’๐‘Ÿ

16 Example Solve the differential equation ๐‘ฆ โ€ฒ = ๐‘ก , ๐‘ฆ 0 =0 Solution We take the Laplace Transform of both sides, using the previous problem for the right-hand-side. โ„’ ๐‘ฆ โ€ฒ =โ„’ ๐‘ก ๐‘ฆ 0 +๐‘  ๐‘Œ ๐‘  = ๐‘›=1 โˆž ๐‘’ โˆ’๐‘›๐‘  ๐‘  ๐‘Œ ๐‘  = ๐‘›=1 โˆž ๐‘’ โˆ’๐‘›๐‘  ๐‘  2 We now take the inverse Laplace Transform of both sides: ๐‘ฆ ๐‘ก = ๐‘›=1 โˆž ๐‘ข ๐‘› ๐‘ก ๐‘กโˆ’๐‘›

17 Example (Laplace Transform of Periodic Functions)
Compute โ„’๐‘“ where ๐‘“ is a periodic function of period ๐ฟ Solution = ๐‘›=0 โˆž ๐‘›๐ฟ ๐‘›+1 ๐ฟ ๐‘“ ๐‘ก ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก = ๐‘›=0 โˆž 0 ๐ฟ ๐‘“ ๐‘ข ๐‘’ โˆ’๐‘  ๐‘ข+๐‘›๐ฟ ๐‘‘๐‘ข โ„’๐‘“ ๐‘  = 0 โˆž ๐‘“ ๐‘ก ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก = ๐‘›=0 โˆž ๐‘’ โˆ’๐‘ ๐‘›๐ฟ 0 ๐ฟ ๐‘“ ๐‘ข ๐‘’ โˆ’๐‘ ๐‘ข ๐‘‘๐‘ข = 0 โˆž ๐‘’ โˆ’๐‘ ๐‘›๐ฟ โ„’ ๐‘“ (๐‘ ) Where ๐‘“ ๐‘ก = ๐‘“(๐‘ก) 0โ‰ค๐‘กโ‰ค๐ฟ 0 ๐ฟ<๐‘ก Although the last formula appears โ€œcleanerโ€, the penultimate formula is more useful in practice: = โ„’ ๐‘“ ๐‘  1โˆ’ ๐‘’ โˆ’๐‘ ๐ฟ If ๐‘“ is ๐ฟ-periodic, then โ„’๐‘“(๐‘ )= ๐‘›=0 โˆž ๐‘’ โˆ’๐‘ ๐‘›๐ฟ 0 ๐ฟ ๐‘“ ๐‘ก ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก

18 Example Find the Laplace Transform of the square-wave function of period 2๐‘Ž
Solution Using the periodic function formula with ๐ฟ=2๐‘Ž If ๐‘“ is ๐ฟ-periodic, then โ„’๐‘“(๐‘ )= ๐‘›=0 โˆž ๐‘’ โˆ’๐‘ ๐‘›๐ฟ 0 ๐ฟ ๐‘“ ๐‘ก ๐‘’ โˆ’๐‘ ๐‘ก ๐‘‘๐‘ก Where 0 2๐‘Ž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘“ ๐‘ก ๐‘‘๐‘ก = 1 ๐‘  1โˆ’ ๐‘’ โˆ’๐‘Ž๐‘  2 = 1 ๐‘  โˆ’ 2 ๐‘’ โˆ’๐‘Ž๐‘  ๐‘  + ๐‘’ โˆ’2๐‘Ž๐‘  ๐‘  Obtain โ„’๐‘“ ๐‘  = ๐‘›=0 โˆž ๐‘’ โˆ’2๐‘Ž๐‘›๐‘  1 ๐‘  โˆ’ 2 ๐‘’ โˆ’๐‘Ž๐‘  ๐‘  + ๐‘’ โˆ’2๐‘Ž๐‘  ๐‘  โ„’๐‘“ ๐‘  = ๐‘›=0 โˆž ๐‘’ โˆ’2๐‘›๐‘Ž๐‘  ๐‘  โˆ’ 2 ๐‘’ โˆ’ 2๐‘›+1 ๐‘Ž๐‘  ๐‘  + ๐‘’ โˆ’ 2๐‘›+2 ๐‘Ž๐‘  ๐‘  โ„’๐‘“ ๐‘  =โˆ’ 1 ๐‘  + 2 ๐‘  ๐‘›=0 โˆž ๐‘’ โˆ’2๐‘›๐‘Ž๐‘  โˆ’ ๐‘’ โˆ’ 2๐‘›+1 ๐‘Ž๐‘  Where ๐‘“ is the unit square-wave of period 2๐‘Ž

19 Example (s-shift formula)
Suppose we know the Laplace transform of ๐‘“(๐‘ก) is ๐น(๐‘ ). Find a function whose Laplace transform is ๐น ๐‘ +๐‘Ž , where ๐‘Ž is a real number. Solution We are looking for a function ๐‘“ ๐‘ก with โ„’ ๐‘“ ๐‘  =๐น ๐‘ +๐‘Ž Write out the definition of the Laplace Transform: 0 โˆž ๐‘’ โˆ’๐‘ ๐‘ก ๐‘“ ๐‘ก ๐‘‘๐‘ก = 0 โˆž ๐‘’ โˆ’ ๐‘ +๐‘Ž ๐‘ก ๐‘“ ๐‘ก ๐‘‘๐‘ก Set the integrands equal to each other to find that ๐‘’ โˆ’๐‘ ๐‘ก ๐‘“ ๐‘ก = ๐‘’ โˆ’ ๐‘ +๐‘Ž ๐‘ก ๐‘“ ๐‘ก ๐‘“ ๐‘ก = ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘“ ๐‘ก Conclude: If โ„’๐‘“=๐น, then โ„’ ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘“ ๐‘ก =๐น ๐‘ +๐‘Ž

20 Example A mass-spring system with resistance is acted upon by a alternating force modelled by the square wave function ๐‘“(๐‘ก) with period 2๐ฟ and (semi-)amplitude ๐ด. Solve the differential equation assuming the mass starts at rest at ๐‘ฅ=0. Assume underdamping ( ๐›ฝ 2 โˆ’4๐‘š๐‘˜<0) Solution ๐‘š ๐‘ฅ โ€ฒโ€ฒ +๐›ฝ ๐‘ฅ โ€ฒ +๐‘˜๐‘ฅ=๐‘“ ๐‘ก Take the Laplace Transform of both sides ๐‘š ๐‘  2 ๐‘‹+๐›ฝ๐‘ ๐‘‹+๐‘˜๐‘‹=โˆ’ ๐ด ๐‘  + 2๐ด ๐‘  ๐‘›=0 โˆž ๐‘’ โˆ’2๐‘›๐‘Ž๐‘  โˆ’ ๐‘’ โˆ’ 2๐‘›+1 ๐‘Ž๐‘  ๐‘‹=โˆ’ ๐ด ๐‘  ๐‘š ๐‘  2 +๐›ฝ๐‘ +๐‘˜ + 2๐ด ๐‘  ๐‘š ๐‘  2 +๐›ฝ๐‘ +๐‘˜ ๐‘›=0 โˆž ๐‘’ โˆ’2๐‘›๐‘Ž๐‘  โˆ’ ๐‘’ โˆ’ 2๐‘›+1 ๐‘Ž๐‘  ๐›พ= ๐›ฝ 2๐‘š ๐œ”= 4๐‘š๐‘˜โˆ’ ๐›ฝ 2 2๐‘š Write ๐‘š ๐‘  2 +๐›ฝ๐‘ +๐‘˜=๐‘š ๐‘ +๐›พ 2 + ๐œ” 2 , where ๐›พ= ๐›ฝ 2๐‘š and ๐œ”= 4๐‘˜๐‘šโˆ’ ๐›ฝ 2 2๐‘š = โˆ’๐ด/๐‘š ๐‘  ๐‘ +๐›พ 2 + ๐œ” ๐ด/๐‘š ๐‘  ๐‘ +๐›พ 2 + ๐œ” 2 ๐‘›=0 โˆž ๐‘’ โˆ’2๐‘›๐ฟ๐‘  โˆ’ ๐‘’ โˆ’ 2๐‘›+1 ๐ฟ๐‘  Apply partial fractions. = ๐ด ๐‘š ๐›พ 2 + ๐œ” ๐‘  โˆ’ ๐‘ +2๐›พ ๐‘ +๐›พ 2 + ๐œ” 2 โˆ’1+2 ๐‘›=0 โˆž ๐‘’ โˆ’2๐‘›๐ฟ๐‘  โˆ’ ๐‘’ โˆ’ 2๐‘›+1 ๐ฟ๐‘ 

21 Example A mass-spring system with resistance is acted upon by a alternating force modelled by the square wave function ๐‘“(๐‘ก) with period 2๐ฟ and (semi-)amplitude ๐ด. Solve the differential equation assuming the mass starts at rest at ๐‘ฅ=0. Assume underdamping ( ๐›ฝ 2 โˆ’4๐‘š๐‘˜<0) Solution ๐‘‹(๐‘ )= ๐ด ๐‘š ๐›พ 2 + ๐œ” ๐‘  โˆ’ ๐‘ +2๐›พ ๐‘ +๐›พ 2 + ๐œ” 2 โˆ’1+2 ๐‘›=0 โˆž ๐‘’ โˆ’2๐‘›๐ฟ๐‘  โˆ’ ๐‘’ โˆ’ 2๐‘›+1 ๐ฟ๐‘  โ„’ sin ๐œ”๐‘ก = ๐œ” ๐‘  2 + ๐œ” 2 โ„’ cos ๐œ”๐‘ก = ๐‘  ๐‘  2 + ๐œ” 2 = ๐ด ๐‘š ๐›พ 2 + ๐œ” ๐‘  โˆ’ ๐‘ +๐›พ ๐‘ +๐›พ 2 + ๐œ” 2 โˆ’ ๐›พ ๐œ” ๐œ” ๐‘ +๐›พ 2 + ๐œ” 2 โˆ’1+2 ๐‘›=0 โˆž ๐‘’ โˆ’2๐‘›๐ฟ๐‘  โˆ’ ๐‘’ โˆ’ 2๐‘›+1 ๐ฟ๐‘  Let ๐‘” ๐‘ก =1โˆ’ ๐‘’ โˆ’๐›พ๐‘ก cos ๐œ”๐‘ก โˆ’ ๐›พ ๐œ” sin ๐œ”๐‘ก and ๐ต= ๐ด ๐‘š ๐›พ 2 + ๐œ” 2 If โ„’๐‘“=๐น, then โ„’ ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘“ ๐‘ก =๐น ๐‘ +๐‘Ž ๐‘ฅ(๐‘ก)=โˆ’๐ต๐‘”(๐‘ก)+2๐ต ๐‘›=0 โˆž ๐œ 2๐‘›๐ฟ ๐‘” ๐‘ก โˆ’ ๐œ 2๐‘›+1 ๐ฟ ๐‘”(๐‘ก) โ„’ ๐œ ๐‘Ž ๐‘“ ๐‘ก = ๐‘’ โˆ’๐‘Ž๐‘  ๐น(๐‘ ) Where ๐œ ๐‘Ž ๐‘“ ๐‘ก = ๐‘ข ๐‘Ž ๐‘ก ๐‘“ ๐‘กโˆ’๐‘Ž

22 Example Plot the solution to the previous problem with ๐‘š=2.3 kg, ๐›ฝ=0.4 kg/s, ๐‘˜=25 N/m, ๐ด=20 N, ๐ฟ=3 s.

23 Example Same example: ๐‘š=0.3 kg, ๐›ฝ=1.2 kg/s, ๐‘˜=30 N/m, ๐ด=40 N, ๐ฟ=12 s


Download ppt "Laplace Transforms."

Similar presentations


Ads by Google