Doc.: IEEE 802.11-03/11-04-0256-00-000n Submission March 2004 PCCC Turbo Codes for IEEE 802.11n B. Bougard; B. Van Poucke; L. Van der Perre {bougardb,

Slides:



Advertisements
Similar presentations
Doc.: IEEE /0071r1 Submission January 2004 Aleksandar Purkovic, Nortel NetworksSlide 1 LDPC vs. Convolutional Codes for n Applications:
Advertisements

Error Correction and LDPC decoding CMPE 691/491: DSP Hardware Implementation Tinoosh Mohsenin 1.
Inserting Turbo Code Technology into the DVB Satellite Broadcasting System Matthew Valenti Assistant Professor West Virginia University Morgantown, WV.
Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education.
Modern Digital and Analog Communication Systems Lathi Copyright © 2009 by Oxford University Press, Inc. C H A P T E R 15 ERROR CORRECTING CODES.
VLSI Communication SystemsRecap VLSI Communication Systems RECAP.
1 Channel Coding in IEEE802.16e Student: Po-Sheng Wu Advisor: David W. Lin.
Submission May, 2000 Doc: IEEE / 086 Steven Gray, Nokia Slide Brief Overview of Information Theory and Channel Coding Steven D. Gray 1.
Generalized Communication System: Error Control Coding Occurs In Right Column. 6.
Improving the Performance of Turbo Codes by Repetition and Puncturing Youhan Kim March 4, 2005.
MIMO-OFDM MIMO MIMO High diversity gain (space-time coding) High diversity gain (space-time coding) High multiplexing gain (BLAST) High multiplexing gain.
296.3Page :Algorithms in the Real World Convolutional Coding & Viterbi Decoding.
Doc.: IEEE /992 Submission September, 2004 Victor Stolpman et. al Irregular Structured LDPC Codes and Structured Puncturing Victor Stolpman, Nico.
Doc.: IEEE /0953r0 Submission August 2004 Keith Chugg, et al, TrellisWare TechnologiesSlide 1 Flexible Coding for n MIMO Systems Keith Chugg.
Doc.: IEEE /180r0 Submission March 2002 Monisha Ghosh, et al., Philips Slide 1 On The Use Of Multiple Antennae For Monisha Ghosh, Xuemei.
Doc.: IEEE /0abcr0 Submission Sept 2004 Mustafa Eroz, Hughes Network SystemsSlide 1 HNS Proposal for n Physical Layer Mustafa Eroz, Feng-Wen.
Doc.: IEEE / n Submission September 2004 France TelecomSlide 1 Partial Proposal: Turbo Codes Marie-Helene Hamon, Olivier Seller, John.
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
An Efficient FPGA Implementation of IEEE e LDPC Encoder Speaker: Chau-Yuan-Yu Advisor: Mong-Kai Ku.
A Mathematical Theory of Communication Jin Woo Shin Sang Joon Kim Paper Review By C.E. Shannon.
Introduction of Low Density Parity Check Codes Mong-kai Ku.
Turbo Codes COE 543 Mohammed Al-Shammeri. Agenda PProject objectives and motivations EError Correction Codes TTurbo Codes Technology TTurbo decoding.
Doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 1 Advanced Coding Comparison Marie-Helene Hamon,
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
Philips Research r0-WNG 1 / 23 IEEE session Hawaii November 2002 Alexei Gorokhov, Paul Mattheijssen, Manel Collados, Bertrand Vandewiele,
Part 1: Overview of Low Density Parity Check(LDPC) codes.
Multi-Split-Row Threshold Decoding Implementations for LDPC Codes
An ARQ Technique Using Related Parallel and Serial Concatenated Convolutional Codes Yufei Wu formerly with: Mobile and Portable Radio Research Group Virginia.
Semi-Parallel Reconfigurable Architecture for Real-time LDPC decoding Karkooti, M.; Cavallaro, J.R.; Information Technology: Coding and Computing, 2004.
Doc.: IEEE /992r1 Submission September, 2004 Victor Stolpman et. al Irregular Structured LDPC Codes and Structured Puncturing Victor Stolpman,
August 2004 doc.: IEEE /0951r1 Submission S. Coffey, et al., WWiSE group Slide 1 WWiSE Group Partial Proposal on Turbo Codes August 13, 2004 Airgo.
Turbo Codes. 2 A Need for Better Codes Designing a channel code is always a tradeoff between energy efficiency and bandwidth efficiency. Lower rate Codes.
Doc.: aj SubmissionSlide 1 LDPC Coding for 45GHz Date: Authors: July 2014 NameAffiliationsAddressPhone Liguang LiZTE CorporationShenzhen.
LDPC FEC for IEEE n Applications
Code Construction and FPGA Implementation of a Low-Error-Floor Multi-Rate Low-Density Parity-Check Code Decoder Lei Yang, Hui Liu, C.-J Richard Shi Transactions.
Doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 1 Advanced Coding Comparison Marie-Helene Hamon,
Memory-efficient Turbo decoding architecture for LDPC codes
Doc.: IEEE / n Submission September 2004 France TelecomSlide 1 Partial Proposal: Turbo Codes Marie-Helene Hamon, Olivier Seller, John.
Doc.: IEEE /0243r1 Submission Franck Lebeugle, France Telecom R&D March 2004 Slide 1 Turbo Codes for IEEE n Marie-Helene Hamon, Vincent.
1 Aggregated Circulant Matrix Based LDPC Codes Yuming Zhu and Chaitali Chakrabarti Department of Electrical Engineering Arizona State.
Waseda University Low-Density Parity-Check Code: is an error correcting code which achieves information rates very close to the Shanon limit. Message-Passing.
296.3:Algorithms in the Real World
August 2004 doc.: IEEE / n August 2004
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
Bridging the Gap Between Parallel and Serial Concatenated Codes
Length 1344 LDPC codes for 11ay
WWiSE Group Partial Proposal on Turbo Codes
WWiSE Group Partial Proposal on Turbo Codes
VLSI Architectures For Low-Density Parity-Check (LDPC) Decoders
Q. Wang [USTB], B. Rolfe [BCA]
A Survey of Advanced FEC Systems
Progress report of LDPC codes
January 2004 Turbo Codes for IEEE n
Partial Proposal: Turbo Codes
HNS Proposal for n Physical Layer
LDPC for MIMO Systems July 8, 2004 Jianuxan Du,
High Throughput LDPC Decoders Using a Multiple Split-Row Method
Physical Layer Approach for n
Advanced Coding Comparison
Variable Length Ldpc Codes for 45GHz
August 2004 doc.: IEEE / n August 2004
Chris Jones Cenk Kose Tao Tian Rick Wesel
Turbo Codes for IEEE n May 2004
<month year> doc.: IEEE /125r0 August 2004
August 2004 doc.: IEEE / n August 2004
Different Channel Coding Options for MIMO-OFDM n
Advanced Coding Comparison
Irregular Structured LDPC Codes and Structured Puncturing
Low-Density Parity-Check Codes
August 2004 doc.: IEEE / n August 2004
Presentation transcript:

doc.: IEEE / n Submission March 2004 PCCC Turbo Codes for IEEE n B. Bougard; B. Van Poucke; L. Van der Perre {bougardb, vanpouck, Presented by Bert Gyselinckx IMEC/Wireless Research March 2004

doc.: IEEE / n Submission March 2004 Outline Advanced FEC for WLAN Myths about Turbo-Codes Turbo Codes: preferred choice for WLAN

doc.: IEEE / n Submission March 2004 Outline  Advanced FEC for WLAN Myths about Turbo-Codes Turbo Codes: preferred choice for WLAN

doc.: IEEE / n Submission March 2004 Advanced FECs get close to Shannon’s Limit 1 1/ Spectral Efficiency [bit/s/Hz] Eb/No [dB] Add points (Benedetto) Uncoded QPSK Viterbi+RS SCBC PCCC Regular LDPC Irregular LDPC Shannon Limit 1 1/ Spectral Efficiency [bit/s/Hz] Eb/No [dB] Add points (Benedetto) 1 1/ Spectral Efficiency [bit/s/Hz] Eb/No [dB] Add points (Benedetto) Uncoded QPSK Viterbi+RS SCBC PCCC Regular LDPC Shannon Limit

doc.: IEEE / n Submission March 2004 PCCC and LDPC are close competitors Performance

doc.: IEEE / n Submission March 2004 PCCC and LDPC are close competitors LDPCPCCC Encodero(N 2 )o(N) DecoderN*2N c +M*(2*N r -1) ~10 iterations N*(2 v v+2 +7) ~ 3-6 iterations Complexity Turbo: N: block size; v: constraint length LDPC: N: block size; M: code dimension; Nc: #ones per column of H; #ones per row of H > <

doc.: IEEE / n Submission March 2004 Outline Advanced FEC for WLAN  Myths about Turbo-Codes Turbo Codes: preferred choice for WLAN

doc.: IEEE / n Submission March 2004 Myth 1: PCCCs have poor performance with small blocksize

doc.: IEEE / n Submission March 2004 Myth 2: PCCCs require code termination that reduces code rate Double termination Virtual termination

doc.: IEEE / n Submission March 2004 Myth 3: PCCCs are power hungry Look at the average TX+RX DC power with adaptive modulation over a representative set of channel instances -5%

doc.: IEEE / n Submission March 2004 Outline Advanced FEC for WLAN Myths about Turbo-Codes  Turbo Codes: preferred choice for WLAN

doc.: IEEE / n Submission March 2004 PCCC assets PCCC already recognized in several standards Potential for low latency Potential for low power Flexibility –Unconstrained in blocksize (numerous interleaver sizes possible) –Any code rate achievable by puncturing –Code rate ‘compatible’ with CC scheme –Energy-Scalable architecture possible

doc.: IEEE / n Submission March 2004 Parallel PCCC codec prototype Nominal clock frequency (max)160 MHz (170.9 MHz) Nominal throughput (max)75.6 Mb/s (80.7 Mb/s) Number of gates<400 K Total RAM area36 Kbit Decoding Latency5  s Energy consumption<1.45 nJ/bit This holds for UMC.18  m technology. If mapped in.13  m, the architecture achieves easily 100Mbps with still less latency and energy consumption

doc.: IEEE / n Submission March 2004 Flexibility makes integration in n easy Interleaver size Interleaver size leading to an integer number of coded OFDM symbols without bit stuffing Interleaver sizes = {128, 144, 192, 256, 288, 384, 432} Code rate = {1/3, 1/2, 2/3, 3/4} Virtual termination

doc.: IEEE / n Submission March 2004 Energy-scalability improves the data rate versus energy consumption trade-off Total Rx energy per bit vs. net goodput

doc.: IEEE / n Submission March 2004 Backup

doc.: IEEE / n Submission March 2004 LDPC in a nutshell c.H T =0 Tanner graph Parity check matrix

doc.: IEEE / n Submission March 2004 LDPC in a nutshell: decoding Sum-product algorithm

doc.: IEEE / n Submission March 2004 PCCC in a nutshell DDD ILV DDD SISO 1 DILV SISO ILV s c1c1 c2c2

doc.: IEEE / n Submission March 2004 PCCC in a nutshell: decoding BCJR algorithm

doc.: IEEE / n Submission March 2004 Key References [1]S. B. Wicker, S. Kim, Fundamentals of codes, graphs and iterative decoding, Kluwer Academic Publishers, 2003 [2] A. Giulietti, B. Bougard, L. Van der Perre, Turbo Codes, Desirable and Designable, Kluwer Academic Publisher, 2003 [3]R. G. Gallager, Low Density Parity-Check Codes, Cambridge, MA: MIT Press, 1963 [4]G. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo Codes”, in Proc. Int. Conf. Commun., Geneva, Switzerland, May 1993 pp [5]C. Schurgers et al., "Memory Optimization of MAP Turbo Decoder Algorithms,“, IEEE Transactions on VLSI Systems, Vol.9, No.2, pp , April [6]A. Giulietti et al., "Parallel turbo code interleavers : avoiding collisions in accesses to storage elements", Electronics Letters, Vol. 38 No. 5, Feb [7]Thul, M.J.; Gilbert, F.; Wehn, N, "Concurrent interleaving architectures for high-throughput channel coding”, in Proc. IEEE ICASSP 2003, Vol. 2, pp April 2003 [8]B. Bougard et al., “A Scalable 837nJ/bit 75Mb/s Parallel Concatenated Convolutional (Turbo-) CODEC”, IEEE International Solid-State Circuits Conference, Digest of Technical Papers, Vol. 1., pp , San Francisco, CA, Feb [9]D. J. C. Mac Kay, “Good error correcting codes based on very sparse matrices”, IEEE Trans. Inform. Theory, vol. 45, pp , Mar [10]T. Richardson and R. Urbanke, “Efficient encoding of Low-density parity-check codes”, IEEE Trans. Inform. Theory, vol. 47, pp , Feb. 2001