Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 

Slides:



Advertisements
Similar presentations
Laser physics EAL 501 Lecture 3. Energy units 1 eV= 1.6x (C) x 1 V= 1.6x J E =hc/ λ 1/λ=E/hc=1J/(6.6x x10 8 x100) 1 cm -1 =1.5 x
Advertisements

Electromagnetic Radiation Electromagnetic radiation - all E-M waves travel at c = 3 x 10 8 m/s. (Slower in water, glass, etc) Speed of light is independent.
Lecture 6 Vibrational Spectroscopy
Thermo & Stat Mech - Spring 2006 Class 20 1 Thermodynamics and Statistical Mechanics Heat Capacities.
Spectroscopy 1: Rotational and Vibrational Spectra CHAPTER 13.
Light: oscillating electric and magnetic fields - electromagnetic (EM) radiation - travelling wave Characterize a wave by its wavelength,, or frequency,
Absorption and Emission Spectrum
P460 - perturbation 21 Time Dependent Perturbation Theory Many possible potentials. Consider one where V’(x,t)=V(x)+v(x,t) V(x) has solutions to the S.E.
PHOTONS IN CHEMISTRY OUT WHY BOTHER?. E = h ν λν = c [ m/s]
INTRO TO SPECTROSCOPIC METHODS (Chapter 6 continued ) Quantum-Mechanical Properties Of Light Photoelectric Effect Photoelectric Effect Energy States of.
1 射电天文基础 姜碧沩北京师范大学天文系 2009/08/24-28 日,贵州大学. 2009/08/24-28 日射电天文暑期学校 2 Spectral Line Fundamentals The Einstein Coefficients Radiative Transfer with Einstein.
Microwave Spectroscopy Rotational Spectroscopy
1 Lecture 5 By Tom Wilson. 2 Dust clouds in Taurus Regions shown in gray are those where very few stars are seen (Becvar atlas)
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
Average Lifetime Atoms stay in an excited level only for a short time (about 10-8 [sec]), and then they return to a lower energy level by spontaneous emission.
Substitution Structure. Scattering Theory P = α E.
Can we build individual molecules atom by atom? Mikkel F. Andersen Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago.
Absorption and Emission of Radiation:
Ch ; Lecture 26 – Quantum description of absorption.
© 2004 Pearson Education Inc., publishing as Addison-Wesley 6. Light: The Cosmic Messenger.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
ROTATIONAL SPECTROSCOPY
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Substitute Lecturer: Jason Readle Thurs, Sept 17th, 2009
Electromagnetic Radiation (How we get information about the cosmos) Examples of electromagnetic radiation? Light Infrared Ultraviolet Microwaves AM radio.
Separation of Motion QM. Separation Vibration Rotation.
H = ½ ω (p 2 + q 2 ) The Harmonic Oscillator QM.
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Atomic transitions and electromagnetic waves
Bill Madden  = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Square of the transition moment  n  e  m  2 2.Frequency.
Quantitative Chemical Analysis Seventh Edition Quantitative Chemical Analysis Seventh Edition Chapter 18 Fundamentals of Spectrophotometry Copyright ©
IR Spectroscopy Wave length ~ 100 mm to 1 mm
Cardinal O’Connell of Boston attacked Einstein’s General Theory of Relativity saying “The theory cloaked the ghastly apparition of atheism and befogged.
Lifetimes (in yrs) Photo dissociation t PD = 10 3 AB + h  A + B 2-body collisions t 2B = 10 3 /n A + B  AB*  A + B Radiative association t RA = 10 9.
1.1 What’s electromagnetic radiation
Time Dependent Perturbation Theory
Spiral Galaxy - Canis Venitici We can only see about 1/6 (ca 6000ly) of the way to the Galctic Centre due to scattering by gas and dust in the disk.
H Atom 21 cm Line. Is the Milky Way a Spiral Galaxy like this one?
AClassical Description >E = T + V Harry Kroto 2004.
Basic Definitions Specific intensity/mean intensity Flux
Mellinger Lesson 6 molecular line & clouds Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
The Electromagnetic Spectrum. Radio wave Less than 1 GHz.
Chapter 8. Molecular Motion and Spectroscopy
MOLECULAR SPECTROSCOPY
Absorption Small-Signal Loss Coefficient. Absorption Light might either be attenuated or amplified as it propagates through the medium. What determines.
Tuesday, September 11 Homework due Tuesday, September 18 th Outline: –Airmass –Magnitudes –Types of Spectra Blackbody Emission Line.
Fermi’s Golden Rule Io I l Harry Kroto 2004.
Time Dependent Perturbation Theory
The Born-Oppenheimer Separation
Only three lines observed R(0) R(1) P(1)
“Forbidden Transitions”
Queen Magazine Harry Kroto 2004.
Einstein Coefficients
Time independent Hoo = Eoo Stationary States mo  m
Doppler Shifts of Interstellar NaD lines
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
H’(t)=E-M field D  = - fi Transition dipole moment.
Queen Magazine Harry Kroto 2004.
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
Molecules Harry Kroto 2004.

The Born-Oppenheimer Separation
 = (4/3ħc) n em2  (Nm-Nn) (o-)
Far infrared rotational spectrum of CO J= B
 l .  l   l   l   l  Io.
Harry Kroto 2004.
The Discovery of the Interstellar Medium (ISM)
Presentation transcript:

Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  /  t

Atoms Molecules Basically only electronic transitions >10000 cm -1 Harry Kroto 2004

C We have to solve the Time independent problem H o  o = E o  o Harry Kroto 2004

Atoms Molecules Basically only electronic transitions >10000 cm -1 electronic transitions E > cm -1 Vibrational transitions E = cm -1 Rotational transitions E = 0.1 – 100 cm -1 Harry Kroto 2004

The Born-Oppenheimer Separation H  = E  H = H el + H vib + H rot + … Harry Kroto 2004

The Born-Oppenheimer Separation H  = E  H = H el + H vib + H rot + …  =  el  vib  rot …  =  i  i Harry Kroto 2004

The Born-Oppenheimer Separation H  = E  H = H el + H vib + H rot + …  =  el  vib  rot …  =  i  i E = E el + E vib + E rot +… E=  i E i Harry Kroto 2004

The Born-Oppenheimer Separation H  = E  H = H el + H vib + H rot + …  =  el  vib  rot …  =  i  i E = E el + E vib + E rot +… E=  i E i We shall often use Dirac notation  m   m  and  m *   n  Harry Kroto 2004

Time independent H o  o = E o  o Harry Kroto 2004

Time independent H o  o = E o  o Stationary States  m o   m  Harry Kroto 2004

Time independent H o  o = E o  o Stationary States  m o   m   m   o  Harry Kroto 2004

D Selection Rules Need to solve the Time Dependent Problem Harry Kroto 2004

Time independent H o  o = E o  o Stationary States  m o   m  Time dependent [H o + V(t)]  = iħ  /  t  m   o  Harry Kroto 2004

Time independent H o  o = E o  o Stationary States  m o   m  Time dependent [H o + V(t)]  = iħ  /  t V(t) = -E e (t)  e  m   o  Harry Kroto 2004

Time independent H o  o = E o  o Stationary States  m o   m  Time dependent [H o + V(t)]  = iħ  /  t V(t) = -E e (t)  e E e (t) = E e o cos 2  t E e (t) Radiation field  e Electric dipole moment  m   o  Harry Kroto 2004

Time independent H o  o = E o  o Stationary States  m o   m  Time dependent [H o + V(t)]  = iħ  /  t V(t) = -E e (t)  e E e (t) = E e o cos 2  t E e (t) Radiation field  e Electric dipole moment  =  m a m (t)  m   m   o  Harry Kroto 2004

Fermi’s Golden Rule IoIo I xx l Harry Kroto 2004

Fermi’s Golden Rule IoIo I xx l Beer Lambert Law I= I o e -  l Harry Kroto 2004

Fermi’s Golden Rule IoIo I xx l Beer Lambert Law I= I o e -  l Harry Kroto 2004

Fermi’s Golden Rule Beer Lambert Law I= I o e -  l IoIo I xx l Harry Kroto 2004

Fermi’s Golden Rule Beer Lambert law I= I o e -  l IoIo I xx l Harry Kroto 2004

Fermi’s Golden Rule Beer Lambert law I= I o e -  l  is the absorption coefficient  = (8  3 /3hc)  n  e  m   2 (N m -N n )  (  o -  ) IoIo I xx l Harry Kroto 2004

 = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Harry Kroto 2004

 = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) ① 1.Square of the transition moment  n  e  m  2 Harry Kroto 2004

 = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) ① ② 1.Square of the transition moment  n  e  m  2 2.Frequency of the light  Harry Kroto 2004

 = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) ① ② ③ 1.Square of the transition moment  n  e  m  2 2.Frequency of the light  3.Population difference (N m - N n ) Harry Kroto 2004

 = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) ① ② ③ ④ 1.Square of the transition moment  n  e  m  2 2.Frequency of the light  3.Population difference (N m - N n ) 4.Resonance factor - Dirac delta function  (0) = 1 Harry Kroto 2004

C Solution > Energy Levels For the H atom we shall just use the Bohr result E(n) = - R/n 2 DSelection Rules  n no restriction  l = ±1 ETransition Frequencies  E = - R[ 1/n 2 2 – 1/n 1 2 ] Harry Kroto 2004

Hot gas cloud – the famous Orion Nebulae At the centre is the Trapezium Cluster of very hot new stars Harry Kroto 2004

Collisions in the Interstellat Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then  2b = 10 3 /n yrs per collision  3b = /n 2 yrs per collision Number densities are anything from n = Harry Kroto 2004

B n<-m Einstein Coefficients nn mm Harry Kroto 2004

B n<-m B n->m nn mm Einstein Coefficients Harry Kroto 2004

A n->m / B n->m = 8  h  3 /c 3 B n<-m B n->m A n->m nn mm Einstein Coefficients Harry Kroto 2004

A = 1.2 x  3  n  e  m  2 transitions per sec Spontaneous emission lifetime   (sec) = 1/A = /  3 sec B n<-m B n->m A n->m nn mm Einstein Coefficients Harry Kroto 2004

 (sec) = /  3  (cm -1 )  (Hz)  3 (Hz 3 )  (sec) H (1420 MHz) 21cm x10 9 3x * H 2 CO rotations 1cm 1 3 x x CO 2 vibrations 10  x x Na D electronic 500nm2x x x H Lyman  100nm x x Calculations assume  e = 1Debye 1yr = 3 x 10 7 sec * magnetic dipole Harry Kroto 2004

a n = a o n 2 a o = 0.05 nm Bohr radius Harry Kroto 2004

a n = a o n 2 a o = 0.05 nm Calculate a 10, a 100 and a 300 in cm Bohr radius Harry Kroto 2004

a n = a o n 2 a o = 0.5 Å (1Å = cm) a 300 = 0.5x10 -3 cm = mm Bohr radius Harry Kroto 2004

Nitrosoethane Harry Kroto 2004

What can molecules do Harry Kroto 2004

What can molecules do 2 Harry Kroto 2004

What can molecules do 2 Harry Kroto 2004