Normal text - click to edit 1 Corsica - 2008 N. Ostgaard 1, J. Stadsnes 1, P. H. Connell 2 T. Gjesteland 1 1) Department of Physics and Technology, University.

Slides:



Advertisements
Similar presentations
RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Advertisements

Solar System Science Flares and Solar Energetic Particles Terrestrial Gamma-Ray Flashes Cosmic-ray interactions with Earth, Sun, Moon, etc. Plans: Optimization.
THE IMPULSIVE X-RAY RESPONSE IN FLARE FOOTPOINTS TOMASZ MROZEK WROCLAW UNIWERSITY ASTRONOMICAL INSTITUTE POLAND.
Advanced GAmma Tracking Array
Terrestrial Gamma-Ray Flashes (TGFs) Observed with Fermi-GBM G. J. Fishman 1, M. S. Briggs 2, and V. Connaughton 2 -for the GBM TGF Team 1 NASA-Marshall.
SOFT GAMMA REPEATERS Kevin Hurley UC Berkeley Space Sciences Laboratory THE SGR-SHORT BURST CONNECTION Kevin Hurley UC Berkeley Space Sciences Laboratory.
Solar flares and accelerated particles
A giant flare from the magnetar SGR a tsunami of gamma-rays Søren Brandt Danish National Space Center.
Solar flare hard X-ray spikes observed by RHESSI: a statistical study Jianxia Cheng Jiong Qiu, Mingde Ding, and Haimin Wang.
Evolving X-ray Polarimetry towards high energy and solar science Sergio Fabiani Università degli Studi di Roma “Tor Vergata” INAF / IAPS I A P S Istituto.
satelliteexperimentdetector type energy band, MeV min time resolution CGRO OSSE NaI(Tl)-CsI(Na) phoswich 0.05–10 4ms COMPTELNaI0.7–300.1s EGRET TASCSNaI(Tl)1-2001s.
RHESSI 2003 October 28 Time Histories Falling fluxes following the peak Nuclear/511 keV line flux delayed relative to bremsstrahlung Fit to 511 keV line.
F.Fuschino, F.Longo et al AGILE view on TGF F. Fuschino, F. Longo, M. Marisaldi, C. Labanti, M. Galli, G. Barbiellini on behalf of the AGILE team.
Working Group 2 - Ion acceleration and interactions.
Terrestrial Gamma-ray Flashes. Gamma Ray Astronomy Beginning started as a small budget research program in 1959 monitoring compliance with the 1963 Partial.
Geant4 simulations for the calorimeter prototypes D. Di Julio, J. Cederkäll, P. Golubev, B. Jakobsson Lund University, Lund, Sweden.
Geant4 simulations for the calorimeter prototypes D. Di Julio, J. Cederkäll, P. Golubev, B. Jakobsson Lund University, Lund, Sweden.
Terrestrial gamma-ray flashes Prepared by Morris Cohen Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global AWESOME Network.
HiRes Usage. Outline ● Shower energy ( Size, dE/dx ) ● Atmospheric profile ( stdz76, radiosonde) ● Rayleigh Scattering ● Aerosols Model ( density, variability.
Reverse Drift Bursts in the GHz Band and their Relation to X-Rays František Fárník and Marian Karlický Astronomical Institute Academy of Sciences.
1 Understanding GRBs at LAT Energies Robert D. Preece Dept. of Physics UAH Robert D. Preece Dept. of Physics UAH.
Simulations with MEGAlib Jau-Shian Liang Department of Physics, NTHU / SSL, UCB 2007/05/15.
HETE- 2 OBSERVATIONS OF THE EXTREMELY SOFT X-RAY FLASH XRF Liang Jau-shian Institute of Physics, NTHU.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh). 1 Spectrum if all energy is captured in detector. Allows identification.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
High Energy Measurements for Solar, Heliospheric, Magnetospheric, and Atmospheric Physics R. P. Lin J. Sample, A. Shih, S. Christe, S. Krucker, I. Hannah.
RHESSI Microflares Steven Christe 1,2, Säm Krucker 2, Iain Hannah 3, R. P. Lin 1,2 1 Physics Department, University of California at Berkeley 2 Space Sciences.
Your Name Your Title Your Organization (Line #1) Your Organization (Line #2) About technique of alignment and stacking of TGF Vybornov V. Pozanenko.
X.-X. Li, H.-H. He, F.-R. Zhu, S.-Z. Chen on behalf of the ARGO-YBJ collaboration Institute of High Energy Physics Nanjing GRB Conference,Nanjing,
Photograph by William Biscorner The World of TGFs David M. Smith Physics Department and Santa Cruz Institute for Particle Physics University of California,
Hard X and Gamma-ray Polarization: the ultimate dimension (ESA Cosmic Vision ) or the Compton Scattering polarimetery challenges Ezio Caroli,
A New Analytic Model for the Production of X-ray Time Lags in Radio Loud AGN and X-Ray Binaries John J. Kroon Peter A. Becker George Mason University MARLAM.
TeV gamma-ray observation of RCW86 with the CANGAROO-II telescope WATANABE Shio (Kyoto university) for the CANGAROO Collaboration Contents The CANGAROO.
Performance limits of a 55  m pixel CdTe detector G.Pellegrini, M. Lozano, R. Martinez, M. Ullan Centro Nacional de Microelectronica, Barcelona, 08193,
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
GLAST's GBM Burst Trigger D. Band (GSFC), M. Briggs (NSSTC), V. Connaughton (NSSTC), M. Kippen (LANL), R. Preece (NSSTC) The Mission The Gamma-ray Large.
Neutrinos and TeV photons from Soft Gamma Repeater giant flares Neutrino telescopes can be used as TeV  detectors for short time scale events using 
June, 2008Corsica TGF production altitude and time delays of the terrestrial gamma flashes – revisiting the BATSE spectra Nikolai Østgaard, Thomas.
Detection of electromagnetic showers along muon tracks Salvatore Mangano (IFIC)
IDEE, The Electron Spectrometer for the Taranis Mission J.-A. Sauvaud 1, P. Devoto, A. Fedorov 1, G. Orttner 1, O. Chasselat 1, K. Wong 1, L. Prech 2,
THE COMPTON GAMMA RAY OBSERVATORIE By: Windell Barfield and Landris Baggs.
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 In the figure: Photoelectric suppressed. Single Compton (effect of crystal dimensions).
A. SarratTPC jamboree, Aachen, 14/03/07 1 Full Monte Carlo of a TPC equipped with Micromegas Antony Sarrat CEA Saclay, Dapnia Motivation Simulation content.
High Redshift Gamma-Ray Bursts observed by GLAST Abstract The Gamma-ray Large Area Space Telescope (GLAST) is the next generation satellite for high energy.
High-energy gammas from the giant flare of SGR of December 2004 in AMANDA Juande D. Zornoza on behalf of the IceCube.
TGF diffuse imaging and spectra as a function of altitude and location P.H.Connell University of Valencia.
Spectrum of Gamma Rays, Produced by the Runaway Electrons G.G. Karapetyan Alikhanian National Laboratory, Armenia.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Update on Rolling Cascade Search Brennan Hughey UW-Madison
Simulation of Terrestrial Gamma Ray and Neutron Flashes (Small variations of thundercloud dipole moment) L.P. Babich, Е.N. Donskoĭ, A.Y. Kudryavtsev, M.L.
The Search for Primordial Black Holes Using Very Short Gamma Ray Bursts D.B. Cline, C. Matthey and S. Otwinowski, UCLA B. Czerny, A. Janiuk, Copernicus.
Fermi Gamma-ray Burst Monitor
Slow heating, fast cooling in gamma-ray bursts Juri Poutanen University of Oulu, Finland +Boris Stern + Indrek Vurm.
IASF Bologna 1 Terrestrial Gamma-Ray Flashes Martino Marisaldi (INAF-IASF Bologna) 2 nd International Conference Frontiers in Diagnostic Technologies Laboratori.
ICARUS T600: low energy electrons
A Study of Reverse MC and Space Charge Effect Simulation with Geant4
Variability of cosmic Gamma-Ray Burst (II)
AE33A-0435 Lightning leader and relativistic feedback discharge models of terrestrial gamma-ray flashes Joseph R. Dwyer1, Ningyu Liu1, J. Eric Grove2,
Study of Cross-Correlation functions in a Neutron star source GX 17+2
Observation of Pulsars and Plerions with MAGIC
WFM/eXTP: sensitivity and sky visibility trade off Jean in 't Zand, with help of Margarita Hernanz, Søren Brandt, Laura Alvarez, Yuri Evangelista, Riccardo.
Latest Results of HDAC analysis
“The First year of HEND operations on the NASA Odyssey Mars Orbiter”
GRB spectral evolution: from complex profile to basic structure
Lecture 4: Light extinction: Compton scattering Gamma-Ray Bursts.
GRB spectral evolution: from complex profile to basic structure
Conditions for Production of Terrestrial Gamma Ray Flashes (TGF)
Conditions for Production of Terrestrial Gamma Ray Flashes (TGF)
Presentation transcript:

Normal text - click to edit 1 Corsica N. Ostgaard 1, J. Stadsnes 1, P. H. Connell 2 T. Gjesteland 1 1) Department of Physics and Technology, University of Bergen, Norway 2) Institute of Mechanical Science, University of Valencia, Spain Monte Carlo Simulations of the temporal behavior of Terrestrial Gamma ray Flashes, and analysis of the BATSE measurements

Normal text - click to edit 2 Corsica Outline Monte Carlo simulations –Time delay BATSE –Calculate the deadtime losses Compare MC time delay with BATSE measurements, which has low deadtime losses

Normal text - click to edit 3 Corsica km altitude20 km altitude MC start with a 1/E energy spectrum Compton scattering changes the energy spectrum Monte Carlo simulation

Normal text - click to edit 4 Corsica Monte Carlo simulations Compton scattering reduces the energy and increases the path length. Assumption: -High energy photons arrives at a satellite detector before low energy photons

Normal text - click to edit 5 Corsica Hard: E>300 keV Soft : E<300 keV hardsoft 25 km altitude Time delay

Normal text - click to edit 6 Corsica Time delay in previous studies: Hard: E>110 keV Soft: E<110 keV Nemiroff et al μs time delay Feng et al 2002 ~100 μs time delay BATSE measurements shows larger time delays Average 81 μs time delay

Normal text - click to edit 7 Corsica A paralyzable detector m n The deadtime, τ, is found from the peak Counts per time

Normal text - click to edit 8 Corsica Highest count rate in a single LAD: 5 cnt/10µs Deadtime ~0,725 µs

Normal text - click to edit 9 Corsica

Normal text - click to edit 10 Corsica How many photons hits one BATSE LAD? R 2 –effect ~1,78 Effective area BATSE LADs –Total 2000 cm 2 –502 cm 2 (Grefenstette et al 2008) Effective area RHESSI –Total 250 cm 2 –239 cm 2 (Grefenstette et al 2008)

Normal text - click to edit 11 Corsica Max RHESSI count rate (Grefenstette et al 2008) cnt/(50 µs * effective area) ~ 13 cnt/ 50 µs Mean RHESSI TGF contains 26 photons (mean duration 1 ms) -Assume 26 photons during 0.26 ms -RHESSI average ~ 1 photon per 10 µs RHESSI photons/10µs2510 BATSE photons/10µs 500 cm 2 effective area71837 BATSE photons/10µs 1000 cm 2 effective area143774

Normal text - click to edit 12 Corsica How many photons hits one BATSE LAD? < 15 photons / 10 μs

Normal text - click to edit 13 Corsica types of TGF Long duration bursts- excluded Multi peak TGF are separated into single peaks BATSE time profiles

Normal text - click to edit 14 Corsica All 8 LADs count rate ≤ 3 cnt / 10μs E>300keV E<300keV Milli sec Calculate the Time delay for each peak

Normal text - click to edit 15 Corsica Average 55 μs time delay Average deadtime loss Deadtime % 0.7 μs13,2 0.8 μs14,6

Normal text - click to edit 16 Corsica Conclusions MC-simulations: ~ 40 μs time delay for TGF produced below 25 km altitude. MC-simulations gives no time delay above 25 km The ”smal” BATSE peaks: ~55 μs time delay on average The time delay indicates that TGF are produced below 25 km altitude Deadtime ≤ 1 μs BATSE is most likely not total paralyzed Smal TGF <15 % losses due to deadtime.