6.1 Sinusoids 6.2 Phasors 6.4 Impedance and Admittance 6.3 Phasor Relationships for Circuit Elements Chapter 6 Sinusoids and Phasors 正弦量和相量.

Slides:



Advertisements
Similar presentations
Chapter 12 RL Circuits.
Advertisements

Ch4 Sinusoidal Steady State Analysis 4.1 Characteristics of Sinusoidal 4.2 Phasors 4.3 Phasor Relationships for R, L and C 4.4 Impedance 4.5 Parallel and.
ECE201 Exam #1 Review1 Exam #1 Review Dr. Holbert February 15, 2006.
AC Review Discussion D12.2. Passive Circuit Elements i i i + -
R,L, and C Elements and the Impedance Concept
Lesson 19 Impedance. Learning Objectives For purely resistive, inductive and capacitive elements define the voltage and current phase differences. Define.
Lecture 16 AC Circuit Analysis (1) Hung-yi Lee. Textbook Chapter 6.1.
Lesson 20 Series AC Circuits. Learning Objectives Compute the total impedance for a series AC circuit. Apply Ohm’s Law, Kirchhoff’s Voltage Law and the.
Chapter 6(a) Sinusoidal Steady-State Analysis
电子技术基础 I 电路分析基础 习题课 II 助教:梁福田 2010 年 12 月 16 日. 1 内容纲要 KCL , KVL 叠加原理,置换定理 网孔法,节点法 戴维南 / 诺顿等效 一阶电路、三要素法.
ELECTRIC CIRCUIT ANALYSIS - I
Lecture 27 Review Phasor voltage-current relations for circuit elements Impedance and admittance Steady-state sinusoidal analysis Examples Related educational.
Chapter 10 Sinusoidal Steady-State Analysis
ES250: Electrical Science
A sinusoidal current source (independent or dependent) produces a current That varies sinusoidally with time.
Chapter 5 Steady-State Sinusoidal Analysis
Chapter 9 Sinusoidal Steady-State Analysis
Chapter 5 Steady-State Sinusoidal Analysis Electrical Engineering and Electronics II Scott.
5.2 The Source-Free Responses of RC and RL Circuits 5.4 Step Response of an RC Circuit 5.1 Capacitors and Inductors 5.3 Singularity Functions 5.5 Complete.
Fundamentals of Electric Circuits Chapter 9
Sinusoids & Phasors. A sinusoidal current is usually referred to as alternating current (ac). Circuits driven by sinusoidal current or voltage sources.
5.3 COMPLEX IMPEDANCES (複數阻抗)
Fall 2000EE201Phasors and Steady-State AC1 Phasors A concept of phasors, or rotating vectors, is used to find the AC steady-state response of linear circuits.
11.1 The Laplace Transform 11.2 Applications of Laplace Transform Chapter11 The Laplace Transform 拉普拉斯变换.
Chapter 9 Sinusoids and Phasor
The V  I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitudeAnd.
Fundamentals of Electric Circuits Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture 16: Sinusoidal Sources and Phasors Nilsson , App. B ENG17 : Circuits I Spring May 21, 2015.
AC Series-Parallel Circuits Chapter 18. AC Circuits 2 Rules and laws developed for dc circuits apply equally well for ac circuits Analysis of ac circuits.
Chapter 10 Magnetically Coupled Circuits and Resonance
Fundamentals of Electric Circuits Chapter 9
第三章 正弦交流电路.
Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 10 Sinusoidal Steady- State Analysis.
2.1 Ohm's Law 2.3 Resistors Combinations 2.2 Kirchhoff's Laws Chapter 2 Basic Laws 基本定律.
2006 Fall Signals and Systems Lecture 2 Complex Exponentials Unit Impulse and Unit Step Signal Singular Functions.
Chapter 3 Methods of Analysis 分析方法 3.1 Nodal Analysis 3.2 Loop Analysis.
04/03/2015 Hafiz Zaheer Hussain.
Lecture 03: AC RESPONSE ( REACTANCE N IMPEDANCE ).
4.1 Superposition 4.3 Thevenin's Theorem and Norton's Theorem 4.2 Source Transformation 4.4 Maximum Power Transfer Chapter 4 Circuit Theorems 电路定理.
SINUSOIDAL STEADY-STATE ANALYSIS – SINUSOIDAL AND PHASOR
5.2 The Source-Free Responses of RC and RL Circuits 5.4 Step Response of an RC Circuit 5.1 Capacitors and Inductors 5.3 Singularity Functions 5.5 Complete.
Applied Circuit Analysis Chapter 12 Phasors and Impedance Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
2.5. Impedance and Admitance. Solution: İn phasor form Example 2.9.
第 11 章 旋转电机交流绕组的电势和磁势 内 容 提 要内 容 提 要  旋转磁场是交流电机工作的基础。  在交流电机理论中有两种旋转磁场: (1) 机械旋转磁场(二极机械旋转磁场,四极机械旋转磁场) (2) 电气旋转磁场(二极电气旋转磁场,四极电气旋转磁场)二极机械旋转磁场四极机械旋转磁场二极电气旋转磁场四极电气旋转磁场.
CHAPTER 2: DC Circuit Analysis and AC Circuit Analysis Motivation Sinusoids’ features Phasors Phasor relationships for circuit elements Impedance and admittance.
8. 3 Power Factor Correction 8.1 Power in a Sinusoidal Steady-State Circuit 8.2 Maximum Average Power Transfer Chapter 8 AC Power Analysis 交流功率分析.
A sinusoidal current source (independent or dependent) produces a current That varies sinusoidally with time.
FUNDAMENTALS OF ELECTRICAL ENGINEERING [ ENT 163 ] LECTURE #7 INTRODUCTION TO AC CIRCUITS HASIMAH ALI Programme of Mechatronics, School of Mechatronics.
Electric Circuits 电路 FU Li-jun 付立军 Dalian Nationalities University 大连民族学院.
Chapter 10 RC Circuits.
ELECTRIC CIRCUITS EIGHTH EDITION JAMES W. NILSSON & SUSAN A. RIEDEL.
Chapter 9 Sinusoids and Phasors
CHAPTER 1: SINUSOIDS AND PHASORS
RC Circuits (sine wave)
1 Chapter 9 Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis.
EE301 Phasors, Complex Numbers, And Impedance. Learning Objectives Define a phasor and use phasors to represent sinusoidal voltages and currents Determine.
高 频 电 子 线 路高 频 电 子 线 路 主讲 元辉 5.5 晶体振荡器 石英晶体振荡器的频率稳定度 1 、石英晶体谐振器具有很高的标准性。 、石英晶体谐振器与有源器件的接入系数通常近似 如下 受外界不稳定因素的影响少。 3 、石英晶体谐振器具有非常高的值。 维持振荡频率稳定不变的能力极强。
12.1 Introduction This chapter will cover alternating current.
Chapter 9 Sinusoids and Phasors
Chapter 9 Sinusoidal Steady-State Analysis
Alexander-Sadiku Fundamentals of Electric Circuits
Chapter 7 Sinusoidal Steady-State Analysis
Ch4 Sinusoidal Steady State Analysis
Chapter 6 Sinusoids and Phasors
ECE 1270: Introduction to Electric Circuits
Alexander-Sadiku Fundamentals of Electric Circuits
Chapter 2 Basic Laws 基本定律
2. 2 The V-I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitude.
Chapter 9 – Sinusoids and Phasors
Chapter 9 – Sinusoids and Phasors
Presentation transcript:

6.1 Sinusoids 6.2 Phasors 6.4 Impedance and Admittance 6.3 Phasor Relationships for Circuit Elements Chapter 6 Sinusoids and Phasors 正弦量和相量

6.1 Sinusoids 正弦量 The sinusoidal voltage Where V m the amplitude ( 幅值 ) of the sinusoid  the angular frequency ( 角频率 ) in radians/s  t the argument ( 相位角 / 相角 ) of the sinusoid  the phase( 相位 ) Or T (s) is the period 周期 f (Hz) is the cyclic frequency 频率

v 1 leads v 2 or v 2 lags v 1 领先 滞后 v 1 and v 2 are out of phase 不同相 If v 1 and v 2 are in phase 同相 v 1 and v 2 are reciprocal phase 反相 v 1 and v 2 are phase quadrature 正交 v1(t)v1(t) v2(t)v2(t) 0

6.2 Phasors 相量 Imaginary axis Real axis Rectangular form 直角坐标形式 A complex number z can be written in three ways: Ⅰ. Complex Number 复数 Polar form 极坐标形式 Exponential form 指数形式

x and y relate to r and  : z may be written as

Ⅱ. The complex number operations 复数运算 Addition: 加法 Subtraction: 减法 Multiplication: 乘法 Division: 除法 Reciprocal: 倒数 Complex conjugate: 共轭复数 The complex numbers:

Ⅲ. Phasor and sinusoid Time domain 时域 Phasor domain 频域 A phasor is a complex number that represents the amplitude and phase of a sinusoid. Maximum value phasor 最大值相量 rms value phasor 有效值相量

The differences between v(t) and should be emphasized: 2. v(t) is time dependent,while is not. 1. v(t) is the instantaneous or time-domain representation,while is the frequency or phasor- domain representation. 3. v(t) is always real with no complex term, while is generally complex.

Example 6.1 Transform these sinusoids to phasors: (a)(a) (b)(b) Solution: (a)(a) (b)(b) Example 6.2 Transform the phasor to sinusoid: f=50Hz Solution:

6.3 Phasor Relationships for Circuit Elements Ⅰ. The resistor

Ⅱ. The inductor

Ⅲ. The capacitor

ElementTime domainFrequency domain R L C Summary of voltage-current relationship

Ⅳ Kirchhoff‘s Laws in the Frequency Domain 频域中的基尔霍夫定律 Around a closed loop KVL : At a closed surface or a node KCL :

6.4 Impedance and Admittance 阻抗和导纳 Impedance 阻抗 Impedance angle 阻抗角 Ⅰ. Impedance

The impedance is inductive 感性 The impedance is capacitive 容性 R =Re Z is resistance 电阻 X=Im Z is reactance 电抗 |Z| R X zz impedance triangle 阻抗三角形

For the passive elements:

The admittance ( 导纳 ) Y is the reciprocal of impedance, measured in siemens (S). G =Re Y is conductance 电导 B=Im Y is susceptance 电纳 Ⅱ. admittance

X<0, capacitive Example 6.3 Determine the equivalent impedance seen from the terminals a and b. Solution: Capacitive or inductive?

Ⅲ. Impedance Combinations 阻抗的等效变换 1. series impedances 阻抗的串联 voltage division (分压)

2. parallel impedances 阻抗的并联 current division (分流)

3. Y-  conversion: Y-  转换 A delta or wye circuit is said to be balanced (对称) if it has equal impedance in all three branches. Then:

部分电路图和内容参考了: 电路基础(第 3 版),清华大学出版社 电路(第 5 版),高等教育出版社 特此感谢!