A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, 104508 (2011) W.Bao et.

Slides:



Advertisements
Similar presentations
Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
Advertisements

Progress in the study of high T c electron doped Ca 10 (Pt 3 As 8 )(Fe 2 As 2 ) 5 and Ca 10 (Pt 4 As 8 )(Fe 2 As 2 ) 5 superconductors Ni University of.
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
NMR Studies of Metal-Insulator Transitions Leo Lamontagne MATRL286K December 10 th, 2014.
Terahertz spectroscopy of electromagnons excitation in a hexaferrite Ba 2 Mg 2 Fe 12 O 22 Ashida Lab. Tadataka Saito Phy.Rev.B 83, (2011) Phy.Rev.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
Yoshida Lab Tatsuo Kano 1.  Introduction Computational Materials Design First-principles calculation DFT(Density Functional Theory) LDA(Local Density.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
SDW Induced Charge Stripe Structure in FeTe
Recap: U(1) slave-boson formulation of t-J model and mean field theory Mean field phase diagram LabelStateχΔb IFermi liquid≠ 0= 0≠ 0 IISpin gap≠ 0 = 0.
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Electronic structure of La2-xSrxCuO4 calculated by the
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
The Three Hallmarks of Superconductivity
What Pins Stripes in La2-xBaxCuO4? Neutron Scattering Group
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Terahertz spectroscopy of electromagnons in Multiferroics
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
How does Superconductivity Work? Thomas A. Maier.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13.
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
NMR study on bismuth oxide superconductor BaPb x Bi 1-x O 3 H. Matsuura and K. Miyake, J. Phys. Soc. Jpn. 81 (2012) Kitaoka Lab. Takashi MATSUMURA.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Superconductivity in electron-doped C 60 crystals 電子ドープされたフラーレン結晶 における超伝導 Kusakabe Lab Kei Kawashima.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
An Introduction to Fe-based superconductors
Search for superconductivity in CrB 2 under pressure 29A13025 Shimizu Lab Kaide Naohiro.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
Magnetic states of lightly hole- doped cuprates in the clean limit as seen via zero-field muon spin spectroscopy Kitaoka Lab Kaneda Takuya F. Coneri, S.
Superconducting properties in filled-skutterudite PrOs4Sb12
Zheng-Yu Weng IAS, Tsinghua University
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Emergent Nematic State in Iron-based Superconductors
Mott Transition and Superconductivity in Two-dimensional
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
Superconductivity and magnetism in iron-based superconductor
ARPES studies of unconventional
Interplay between magnetism and superconductivity in Fe-pnictides Institute for Physics Problems, Moscow, July 6, 2010 Andrey Chubukov University of Wisconsin.
Magnetism of the regular and excess iron in Fe1+xTe
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computer Science.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Interplay between magnetism and superconductivity in Fe-pnictides INFN, Frascati, July 14, 2011 Andrey Chubukov University of Wisconsin.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
A New Piece in The High T c Superconductivity Puzzle: Fe based Superconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville,
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computational.
MÖSSBAUER STUDY OF NON-ARSENIC IRON-BASED SUPERCONDUCTORS AND THEIR PARENT COMPOUNDS K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J.
Search of a Quantum Critical Point in High Tc Superconductors
75As NQR Studies on LaFeAsO1-y and NdFeAsO0.6
Magnetic, structural and electronic properties of LaFeAsO1-xFx
Anisotropic superconducting properties
UC Davis conference on electronic structure, June. 2009
Presentation transcript:

A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et al, arXiv: v1 Feb (2011)

Contents Introduction –Iron-based superconductor History Structure Characteristics Experiment ~K 0.8 Fe 2-y Se 2 ~ –Comparison to previous sample –NMR measurement Summary 2

History of superconductivity under high pressure SmO 0.9 F 0.11 FeAs LaO 0.89 F 0.11 FeAs LaOFeP Hg-Ba-Ca-Cu-O () Tl-Ba-Ca-Cu-O Bi-Sr-Ca-Cu-O Y-Ba-Cu-O MgB 2 NbGe NbN NbC Nb Pb high-T c cuprate metal iron-based system Transition temperature (K) Year Hg La-Ba-Cu-O Discovery of superconducting phenomenon High-T c cuprate superconductor 2006 Iron-based high-T c superconductor Heavy fermion superconductor CeCu 2 Si 2 heavy fermion system PuCoGa 5 Introduction 3

Iron-based superconductor LaFeAsOBaFe 2 As 2 LiFeAs FeSe Fe As Se 1111 system122 system 111 system 11 system T c max = 55K T c max = 38K T c max = 18K T c max = 8K Fe-Pnictide layer Introduction Pnictgen(15 族元素 ) 4

Iron-based superconductor Introduction Band structure Fermi suface Phase diagram 5 hole electron nesting hole electron

Iron-based superconductor FeSe Dy Pr Ce La Er Ba Na Li Nd Regular tetrahedron(109.5°) Anion height α Fe Pnictgen 6 Introduction

K 0.8 Fe 2-y Se 2 Characteristics isostructural to BaFe 2 As 2 relatively high T c of ~33K heavily electron-doped system Introduction Cs 0.8 K 0.8 Cs 0.8 FeSe Dy Pr Ce La Er Ba Na Li Nd Regular tetrahedron(109.5°) TCTC TNTN TSTS 1111~55K~140K~155K 122~38K~135K~140K K 0.8 Fe 2-y Se 2 ~33K~560K~580K 7 J.Guo et al, PHYSICAL REVIEW B 82, R 2010

Fermi surface Experiment Previous superconductor K 0.8 Fe 2-y Se 2 8 Qian et al, arXiv: v1 Dec (2010) Band structure Fermi suface Band structure Fermi suface hole electron nesting hole electron hole electron Absence of the hole band

Phase diagram Experiment Previous superconductor AFM:antiferromagnetic ( 反強磁性 ) SDW:spin density wave ( スピン密度波 ) M.Fang et al, EPL, 94 (2011) T S,T N ≒ 140K~160K T cMAX ≒ 50K T S,T N ≒ 300K ~ 500K T cMAX ≒ 33K Expect higher T c K 0.8 Fe 2-y Se 2

M~3.31μ B Ordered state Experiment Previous superconductor Stripe magnetic order Orthorhombic (斜方晶) unusual antiferromagnetic structure Tetragonal (正方晶) Fe vacancy order M~0.5μ B 10 Fe As W.Bao et al, arXiv: v1 Feb (2011) K 0.8 Fe 2-y Se 2

Electron-dope Experiment D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) E DOS E F0 ~ k B T ( large ) High temperature E DOS E F0 ~ k B T ( small ) Low temperature Similar to the electron-doped systems among Fe-based superconductors K 0.8 Fe 2-y Se 2 DOS : density of states 11

Lack the hole bands near the zone center AFSF (antiferromagnetic spin fluctuation) 1/T 1 T is enhanced toward Tc in both FeSe and the optimally doped Ba(Fe 0.92 Co 0.08 ) 2 As 2 enhancement of the AFSF K x Fe 2-y Se 2 Ba122(OVD) Experiment D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) TcTc In K 0.8 Fe 2 Se 2, there is no enhancement similarly to overdoped, nonsuperconducting Ba(Fe 0.86 Co 0.14 ) 2 As 2 TcTc (T c ~25K) (T c ~0K) (T c ~33K) (T c ~9K) TcTc 12 FeSe Ba122(OPT) nesting hole electron Electron dope

Summary Introduction about K 0.8 Fe 2-y Se 2 What is the reason of relatively high T c ? –The structure of Fe-pnictide layer ? –Nesting between electron-band and hole- band ? –High T N and T s ? This sample gives us a new point of view about Iron-based superconductors 13

14

15

16 R.Liu et al, EPL, 94 (2011) 27008

17

NMR spectrum NMR Intensity H Introduction Zeeman interaction m=+1/2 m=-1/2  ℏ H 0 Zeeman splitting μ : moment of nuclear spin( 核磁気モーメント ) γ : nuclear gyromagnetic ratio( 核磁気回転比 )

Knight shift NMR Intensity H electron Introduction

Nuclear spin-lattice relaxation time T 1 thermal equilibrium state excited state Electron system Lattice system Nuclear spin-lattice relaxation time( 核スピン格子緩和時間 ) Exchange of energy thermal equilibrium state T1T1

H.Kotegawa et al, arXiv: v4 12 Apr 2011D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) 1/T 1

1/T 1 T Experiment H.Kotegawa et al, arXiv: v4 12 Apr 2011 FeSe (Fe 0.9 Co 0.1 )Se electron dope doping suppresses the AFSF and SC K 0.8 Fe 2 Se 2 character of the band near the Fermi level is different form FeSe H.Ikeda et al, JPSJ (2008)

77 K vs 1/T 1 T Experiment H.Kotegawa et al, arXiv: v4 12 Apr 2011 Korringa relation κ << 1 κ >> 1 ferromagneticantiferromagnetic K orb =0.02% A hf χ spin (T =0)=0 The non linear relationship κ is not very far from 1 the increase toward low temperature Spin correlations are not so strong, but AF spin correlations are developed κ : korringa ratio( コリンハ比率 )