Large-scale Underwater/ice Neutrino Telescopes G. Domogatsky (INR RAN, Moscow)

Slides:



Advertisements
Similar presentations
P. Sapienza, Laboratori Nazionali del Sud (INFN)NOW2004, sept A km 3 detector in the Mediterranean: status of NEMO Motivation for a km 3 detector.
Advertisements

Lake Baikal Neutrino Experiment Present and Future G.V.Domogatsky (INR, Moscow) for the Baikal collaboration.
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
AMANDA Lessons Antarctic Muon And Neutrino Detector Array.
Recent Results Lutz Köpke University of Mainz, Germany July 31, 2003
The IceCube Neutrino Telescope Project overview and Status EHE Physics Example: Detection of GZK neutrinos TAUP2003 Shigeru Yoshida, Chiba University.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
IceCube.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
Optical Sensor and DAQ in IceCube Albrecht Karle University of Wisconsin-Madison Chiba July, 2003.
The IceCube High Energy Telesope The detector elements Expected Sensitivity Project Status Shigeru Yoshida Dept. of Physics CHIBA Univ. ICRC 2003.
Neutrino Astronomy at the South Pole David Boersma UW Madison “New Views of the Universe” Chicago, 10 December 2005.
Prototype string for a km3 Baikal neutrino telescope Roma International Conference on Astroparticle Physics V.Aynutdinov, INR RAS for the Baikal Collaboration.
Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope E. Osipova -MSU (Moscow) for the Baikal Collaboration (Workshop, Uppsala,
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
Per Olof Hulth Stockholm university1 NSF Review March 25-27, 2003 Introductory remarks Per Olof Hulth Stockholm university.
Moscow, V. Aynutdinov, INR RAS for Baikal collaboration The Baikal neutrino telescope: The Baikal neutrino telescope: Physics results and future.
Neutrino Astronomy with AMANDA Steven W. Barwick University of California-Irvine SPIE Conference -Hawaii, 2002.
A km 3 Neutrino Telescope: IceCube at the South Pole Howard Matis - LBNL for the IceCube Collaboration.
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
Neutrino astronomy with AMANDA and IceCube Per Olof Hulth Stockholm University
IceCube S Robbins University of Wuppertal Moriond - “Contents and Structures of the Universe” La Thuile, Italy, March 2006 Outlook for Neutrino Detection.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
Slide 1 K. Hanson – ICHEP 2002 (Amsterdam) 07/2002 Recent Results from AMANDA II Kael Hanson for the AMANDA Collaboration UNIVERSITY OF WISCONSIN – MADISON.
The next generation of Neutrino telescopes -ICECUBE Design and Performance, Science Potential Albrecht Karle University of Wisconsin-Madison
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
Frontiers in Contemporary Physics: May 23, 2005 Recent Results From AMANDA and IceCube Jessica Hodges University of Wisconsin – Madison for the IceCube.
First Results from IceCube Physics Motivation Hardware Overview Deployment First Results Conclusions & Future Plans Spencer Klein, LBNL for the IceCube.
Neutrino Astronomy at the South Pole David Boersma UW Madison Lake Louise Winter Institute Chicago, 23 February 2006.
AMANDA and IceCube neutrino telescopes at the South Pole Per Olof Hulth Stockholm University.
Baikal Neutrino Experiment Vladimir Aynutdinov for the Baikal Collaboration Athens, October 13, 2009.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
STATUS OF BAIKAL NEUTRINO EXPERIMENT: Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for the Baikal Collaboration HECR’ May.
COSMO/CosPA 2010 Searches for the Highest Energy Neutrino with IceCube Searches for the Highest Energy Neutrino with IceCube Aya Ishihara ( Fellow) (JSPS.
B.Baret Vrije Univertsiteit Brusse l Vrije Universiteit Brussel, Belgium The AMANDA – IceCube telescopes & Dark Matter searches B. Baret on behalf of the.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
Status of the Baikal Neutrino Telescope NT200+ VLVNT2 Workshop, Catania, Ralf Wischnewski DESY, Zeuthen Outline: - Motivation / Methods - The.
Science Advisory Committee March 30, 2006 Jim Yeck IceCube Project Director IceCube Construction Progress.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
The ANTARES Project Sino-French workshop on the Dark Universe Stephanie Escoffier Centre de Physique des Particules de Marseille On behalf of the ANTARES.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
Baikal-GVD: status and plans Denis Kuleshov Denis Kuleshov INR, Moscow, Oct 28, 2015.
IceCube project Shigeru Yoshida Dept. of Physics, Chiba University.
Gigaton Volume Detector in Lake Baikal: status of the project Zh.-A. Dzhilkibaev (INR, Moscow) Zh.-A. Dzhilkibaev (INR, Moscow) for the Baikal Collaboration.
The BAIKAL Neutrino Telescope: Results and Plans 19 th ERCS, Florence, Italy,September 3 rd, 2004 Ralf Wischnewski DESY-Zeuthen.
Icecube Neutrino Observatory at the South Pole Kirill Filimonov, University of California, Berkeley, for the IceCube Collaboration.
The BAIKAL Neutrino Telescope: from NT200 to NT th ICRC Pune, India, Ralf Wischnewski DESY-Zeuthen.
The Baikal Experiment - Status, Results and Perspectives Zh. Dzhilkibaev for the Baikal Collaboration.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
1 slide Brennan Hughey University of Wisconsin – Madison for the AMANDA Collaboration Recent Results From the AMANDA Experiment Rencontres du Vietnam August.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Gigaton Volume Detector in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Cassis, May 3, th International Workshop on Ring Imaging.
High energy neutrino acoustic detection activities in Lake Baikal: status and plans N.Budnev for the Baikal Collaboration Irkutsk State University, Russia.
THE BAIKAL NEUTRINO EXPERIMENT: STATUS, SELECTED PHYSICS RESULTS, AND PERSPECTIVES Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for.
Alexander Kappes ECAP, Universität Erlangen-Nürnberg for the KM3NeT Consortium 2009 EPS HEP, Krakow, 16. July 2009 The KM3NeT project: Towards a km 3 -scale.
Dark Matter Searches with AMANDA and IceCube Catherine De Clercq for the IceCube Collaboration Vrije Universiteit Brussel Interuniversity Institute for.
The prototype string for the km3 scale Baikal neutrino telescope VLVnT April 2008 Vladimir Aynutdinov, INR RAS for the Baikal Collaboration for.
Imaging the Neutrino Universe with AMANDA and IceCube
Status of the Baikal-GVD experiment
Julia Becker for the IceCube collaboration
Performance of the AMANDA-II Detector
Christian Spiering, ESC DESY, Sept.2003
Presentation transcript:

Large-scale Underwater/ice Neutrino Telescopes G. Domogatsky (INR RAN, Moscow)

STATUS Operating Mounting R&D BAIKAL NESTOR IceCube (Antarctic) AMANDA ANTARES km3(Mediterranean) NEMO km3 (Baikal)

1.Institute for Nuclear Research, Moscow, Russia. 2.Irkutsk State University, Irkutsk, Russia. 3.Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia. 4.DESY-Zeuthen, Zeuthen, Germany. 5.Joint Institute for Nuclear Research, Dubna, Russia. 6.Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia. 1. St.Petersburg State Marine University, St.Petersburg, Russia. 2. Kurchatov Institute, Moscow, Russia. The Baikal Collaboration

The Site 4 cables x 4km to shore. 1070m depth 3600 m 1366 m NT-200

Ice as a natural deployment platform Ice stable for 6-8 weeks/year: –Maintenance & upgrades –Test & installation of new equipment –Operation of surface detectors (EAS, acoustics,… ) Winches used for deployment operations 

Baikal Abs. Length: 22 ± 2 m Scatt. Length (geom) ~ m  cos  ~ Baikal - Optical Properties In-situ measurements FreshWater  no K40 BG

9 The NT-200 Telescope -8 strings: 72m height optical modules - pairwise coincidence  96 space points - calibration with N-lasers - timing ~ 1 nsec - Dyn. Range ~ 1000 pe Effective area: 1 TeV ~2000 m² Eff. shower volume: 10TeV ~0.2Mt Quasar PMT: d = 37cm Height x  = 70m x 40m, V=10 5 m 3

Few upward pointing pairs get „hats“ against sedimentation Optical Module – Pair (Coincidence)

Excess neutrino induced upward muon flux 90% c.l. limits from the Earth ( 502 days of NT-200 livetime, E  > 10 GeV ) WIMP Search

Search for fast monopoles (  780 livedays Monopole limit (90% C.L.) N   = n 2 (g/e) 2 N   = 8300 N   g = 137/2, n = 1.33 Event selection criteria: hit channel multiplicity - N hi t > 35 ch, upward-going monopole -  (z i -z)(t i -t)/(  t  z ) > 0.45 &  o Background - atmospheric muons N hit distributions

Search for slow massive monopoles (10 -5 <  -3   cat         M+p M+e + (+  …),   ~10 5 NT detection of massive bright objects (GUT-monopoles, nuclearites, Q-balls …) monopole trigger: N hit >4 within dt=500  sec selection requirements - N ch >1 with N hit >14 MACRO 150 days life time

15 Search for High Energy - Cascades NT-200 large effective volume Look for upward moving light fronts. Signal: isolated cascades from neutrino interactions Background: Bremsshowers from h.e. downward muons Final rejection of background by „energy cut“ (N channel )  (BG)

The 90% C.L. Limits Obtained With NT-200 (780 days) DIFFUSE NEUTRINO FLUX (Ф ~ E -2, 10 TeV < E < 10 4 TeV) e     = 1  2  0 (AGN) e     = 1  1  1 (Earth) Diffuse flux of e, ,  : cascades W-RESONANCE ( E = 6.3 PeV,  5.3 · cm 2 ) Ф e < 4.2 · (cm 2 · s · sr · GeV ) -1 Ф e < 5.0 · (cm 2 · s · sr · GeV ) -1 (AMANDA04) E 2 Ф < 1.0 ·10 -6 GeV cm -2 s -1 sr -1 E 2 Ф < 8.6 ·10 -7 GeV cm -2 s -1 sr -1 (AMANDA04) V g (NT-200) AMANDA II

Diffuse flux of e, ,  : cascades Experimental limits and theoretical predictions SS SP SDSS D.Semikoz, G.Sigl 04 Models ruled out by AMANDA04 and BAIKAL04 SDSS - Stecker et al.92 SS - Stecker, Salamon964 SP - Szabo, Protheroe92 MPR MPR - Mannheim, Protheroe, Rachen

Upgrade to NT : two distant test string 2005: completion 36 additional PMTs on 3 far ‘strings‘  4 times better sensitivity ! PeV Mton

NT-200+ status 2004: - new cable to shore - DAQ system has been improved - two of three outer strings are installed common events are taken during 364 hours life time (0.017 Hz)

A Gigaton (km3) Detector in Lake Baikal. Sparse instrumentation: 91 strings with 12 OM = 1308 OMs  effective volume for 100 TeV cascades ~ km³!  muon threshold between 10 and 100 TeV

BAIKAL CONCLUSION - strong in HE-diffuse search (shower) and exotic particles (monopoles): “Mton detector” - good GRB-sensitivity, complementary to AMANDA - relevant other results: WIMP - upgrade to NT-200+ in R&D Gigaton Volume Detector (km3)

R.Wischnewski ANTARES, La Seyne sur Mer, AMANDA

R.Wischnewski ANTARES, La Seyne sur Mer, AMANDA Collaboration Bartol Research Institute, University of Delaware, Newark, USA BUGH Wuppertal, Germany Universite Libre de Bruxelles, Brussels, Belgium Universidad Simon Bolivar, Caracas, Venezuela DESY-Zeuthen, Zeuthen, Germany Dept. of Technology, Kalmar University, Kalmar, Sweden Lawrence Berkeley National Laboratory, Berkeley, USA Dept. of Physics, UC Berkeley, USA Institute of Physics, University of Mainz, Mainz, Germany University of Mons-Hainaut, Mons, Belgium University of California, Irvine, CA Dept. of Physics, Pennsylvania State University, University Park, USA Physics Department, University of Wisconsin, River Falls, USA Physics Department, University of Wisconsin, Madison, USA Division of High Energy Physics, Uppsala University, Uppsala, Sweden Fysikum, Stockholm University, Stockholm, Sweden Vrije Universiteit Brussel, Brussel, Belgium Imperial College, London, United Kingdom NIKHEF, Utrecht, Netherlands Groups: 7 x US 11 x Europe 1 x South America ~110 Authors

R.Wischnewski 677 PMTs at 19 strings ( ) - successfully running since 10 years

25 Largest excess: 8 evt vs. 2.1 evt BG (16.5% probability) First data from AMANDA-II: No Indication for a Point-Source found

IceCube 1400 m 2400 m AMANDA South Pole IceTop ~ atm. per year Installation: Instrumented volume: 1 km PMT AMANDA-II - 80 Strings

South Pole Dark sector AMANDA IceCube Dome Skiway

03-04drill equipment to Pole 04-05first strings (proof that 16/season are feasible, prepare 6 full strings) strings strings strings strings 09-10remaining strings

1. The sites 4100m 2400m 3400m ANTARES NEMO NESTOR

towers of 12 titanium floors each supporting 12 PMTs Presently deployed 7 NESTOR towers, 1008 OMs → m ² at 1 TeV, 1° resolution Nesto r

Status and Plans Nestor Jan 2002: deployment of LAERTIS at 4200 m depth March 2003: deployment of first prototype floor (reduced size) April 2003: high current  interruption of data taking Autumn 2003: recover floor Spring 2004: deploy first 2, then 4 floors Except electronics, all components for a full tower in Pylos event recorded with the prototype floor

ANTARES2500m 300mactive Electro-optic submarine cable ~40km ~40km Junction box Readout cables Shore station anchor float Electronics containers ~60m Compass, tilt meter hydrophone Optical module Acoustic beacon ~100m 12 strings 12 m between triplets

Status and Plans Antares Dec 2002 March 2003 To shore Oct 2001 Prototype sector line Dec 2002Mini Instrumentation Line Feb 2003

Summary of variation of Bioluminescence, Antares

Schedule March 2003 Start operation PSL and MIL lines May 2003 Recover MIL July 2003 Recover PSL for evaluation June 2004 Start assembly of production detector end 2004 Connect first production line line detector complete

Nemo design abs. length ~70 m 80 km from coast 3400 m deep NEMO Neutrino Mediterranean Observatory

Up-down symmetry 64 towers, each 16 arms, 20 m long 40 m apart 4096 PMTs Wet connections by ROV

Status and Plans Nemo  Repeated environmental studies since 1998 ( more than 20 campaigns)  25 km electro-optical cable to NEMO Phase-1  test site neighbored by Geostar lab At present: work on a detector subsystem including all critical components

NEMO Site selection and R&D Prototyping at Catania Test Site ? Construction of km 3 Detector ANTARES R&D, Site Evaluation 2000 Demonstrator line 2001 Start Construction September 2002 Deploy prototype line December (14?) line detector complete ? Construction of km 3 Detector NESTOR R & D, Site Evaluation Summer 2002 Deployment 2 floors Winter 2003 Recovery & re-deployment with 4 floors Autumn 2003 Full Tower deployment 2004 Add 3 DUMAND strings around tower ? Deployment of 7 NESTOR towers

CONCLUSION REASONABLE PREDICTION: years one or two detectors of volume ~ 1 cubic km