ERO code development A. Kirschner M. Airila, D. Borodin, S. Droste, C. Niehoff  The ERO code  ERO code management  Modelling of CH 4 puffing in ASDEX.

Slides:



Advertisements
Similar presentations
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
Advertisements

ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
K. Krieger, SEWG Meeting on Material Migration and ITER Material Mix, JET, Max-Planck-Institut für Plasmaphysik Carbon local transport and redeposition.
EU Plasma-Wall Interaction TF – Meeting FZJ SEWG Chemical Erosion S. Brezinsek TEC 1 Report of the Special Expert Working Group on Chemical.
Joint SEWGs-TFE meeting S. Brezinsek22/07/2008 TF E Impact of N 2 on carbon chemistry in JET S. Brezinsek, Y. Corre and TFE.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
EU Plasma-Wall Interaction TF – Meeting – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting
Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger Max-Planck-Institut.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Trilateral Euregio Cluster Session plan for E Intrinsic hydrocarbon yields and photon efficiencies Motivation Shot list (i) setup pulses (ii) C.
ASIPP HT-7 belt limiter Houyang Guo, Sizhen Zhu and Jiangang Li Investigation of EAST Divertor Asymmetry in Plasma Detachment & Target Power Loading Using.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV.
Material Erosion and Redeposition during the JET MkIIGB-SRP Divertor Campaign A. Kirschner, V. Philipps, M. Balden, X. Bonnin, S. Brezinsek, J.P. Coad,
Spectroscopy of hydrocarbon in low temperature plasmas : Results from JT-60U T. Nakano J apan A tomic E nergy A gency, Ibaraki, Japan. 6-9/11/2006 ITPA.
1 ITPA - DSOL - TorontoS. Brezinsek TEC Hydrocarbon spectroscopy on EU tokamaks S. Brezinsek on behalf of the EU task force for Plasma-Wall Interaction.
Alberto Loarte 7 th ITPA Divertor Meeting – Toronto 6/9 – 11 – ITER Issue Card PFC-4. Modification of geometry of the divertor PFCs and neutral.
Centre de Recherches en Physique des Plasmas TF-E modellers meeting B. Gulejová6/5/ of 10 SOLPS5 simulations of Type I ELMing H-mode at JET Barbora.
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
Progress on Determining Heat Loads on Divertors and First Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting December 12-13, 2007 Atlanta, Georgia.
Barbora Gulejová 1 of 10 PSI 2008 abstract 5/12/2007 SOLPS modelling of Type I ELMing H-mode on JET Barbora Gulejová, Richard Pitts, David Coster, Xavier.
Barbora Gulejová 1 of 2 EPS 2007 material 20/6/2007 Time-dependent modelling of ELMing H-mode at TCV with SOLPS Barbora Gulejová, Richard Pitts, Xavier.
H. D. Pacher 1, A. S. Kukushkin 2, G. W. Pacher 3, V. Kotov 4, G. Janeschitz 5, D. Reiter 4, D. Coster 6 1 INRS-EMT, Varennes, Canada; 2 ITER Organization,
Trilateral Euregio Cluster Simultaneous observation of CD and C 2 in the near UV region in the JET divertor spectral window for the observation of CD and.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
J.P. Coad 1 H Workshop, Salamanca 3 June 2008 Local deposition of 13C tracer at the JET MkII-SRP outer divertor J Paul Coad Hydrogen Workshop, Salamanca,
Key Issues in Plasma-Wall Interactions for ITER The European Approach V. Philipps, J. Roth, A. Loarte With Contributions G.F MatthewsH.G.EsserG. Federici.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
Simulation Study on behaviors of a detachment front in a divertor plasma: roles of the cross-field transport Makoto Nakamura Prof. Y. Ogawa, S. Togo, M.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
V. A. Soukhanovskii 1 Acknowledgements: M. G. Bell 2, R. Kaita 2, H. W. Kugel 2, R. Raman 3, A. L. Roquemore 2 1 Lawrence Livermore National Laboratory,
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Challenges in edge modeling IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D Greifswald, Germany Outline: 1. Motivation 2.
1 Development of integrated SOL/Divertor code and simulation study in JT-60U/JT-60SA tokamaks H. Kawashima, K. Shimizu, T. Takizuka Japan Atomic Energy.
R. P. Doerner, 2 nd PMIF Meeting, Juelich, Sept , 2011 Plasma interactions with Be surfaces R. P. Doerner, D. Nishijima, T. Schwarz-Selinger and.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
TEC Trilateral Euregio Cluster 1 S. Brezinsek Spectroscopic determination of carbon erosion yields and the composition of chemically eroded molecular carbon.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Transport of deuterium - tritium neutrals in ITER divertor M. Z. Tokar and V.Kotov Plasma and neutral gas in ITER divertor will be mixed of deuterium and.
1 of 22A.V.Chankin & D.P.Coster, 18 th PSI Conference, Toledo, Spain, 29 May 2008 Comparison of 2D Models for the Plasma Edge with Experimental Measurements.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
Effects of tungsten surface condition on carbon deposition
Edge-SOL Plasma Transport Simulation for the KSTAR
Gas inlet position References Experiment 1) W sputtering experiment Aim: study of W erosion for different plasma conditions by aim of spectroscopy reference.
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
Deposition in the MKII - Gas Box Divertor Deposition in Septum M. Rubel, P. Coad, J. Likonen OUTLINE General deposition pattern on MKII-GB tiles Septum.
Radial Electric Field Formation by Charge Exchange Reaction at Boundary of Fusion Device* K.C. Lee U.C. Davis *submitted to Physics of Plasmas.
ITER STEADY-STATE OPERATIONAL SCENARIOS A.R. Polevoi for ITER IT and HT contributors ITER-SS 1.
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
1 L.W. Yan, Overview on HL-2A, 23rd IAEA FEC, Oct. 2010, Daejeon, Republic of Korea HL-2A 2 nd Asia-Pacific Transport Working Group Meeting ELM mitigation.
1 EAST Recent Progress on Long Pulse Divertor Operation in EAST H.Y. Guo, J. Li, G.-N. Luo Z.W. Wu, X. Gao, S. Zhu and the EAST Team 19 th PSI Conference.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Overview of recent work on carbon erosion, migration and long-term fuel retention in the EU-fusion programme and conclusions for ITER V. Philipps a Institute.
P.C. Stangeby, et al. “ 13 C-Tracer Experiments in DIII-D” ITPA Meeting, Toronto, High Density H-mode 13 C-Tracer Experiments in DIII-D ITPA DSOL.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION FDF: PWI issues and research opportunities Peter Stangeby University of Toronto.
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
Localised Neutron Emission at the edge of high density JET Trace Tritium - ELMy H-mode plasmas A.Murari 6 on the behalf of G. Bonheure 1, S. Popovichev.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
Features of Divertor Plasmas in W7-AS
Generation of Toroidal Rotation by Gas Puffing
Reduction of ELM energy loss by pellet injection for ELM pacing
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Studies of impurity migration in TEXTOR by local tracer injection
SOL plasma in ITER is dense and hot  thick to gas puff as in C-mod
Quasi-steady-state conditions in JET-ILW:
Presentation transcript:

ERO code development A. Kirschner M. Airila, D. Borodin, S. Droste, C. Niehoff  The ERO code  ERO code management  Modelling of CH 4 puffing in ASDEX  Modelling of CH 4 puffing in JET

The ERO code  3-dimensional (at present 2D for divertor), Monte Carlo  Various experimental geometries are possible (at the moment: TEXTOR, ASDEX, JET, ITER, PISCES, MAGNUM)  Plasma-wall-interaction: - physical sputtering, chemical erosion (CH 4 or higher hydrocarbons) - C-deposition from background, re-deposition of eroded particles  Local particle transport: - ionisation, recombination, dissociation - Ehrhardt/Langer or Janev data for CH 4 reaction chain - friction (Fokker-Planck), thermal force, Lorentz force, diffusion D 

ERO code management (1) Several users and developers: version controlling necessary CVS (Concurrent Versions System) – server at FZJ Variety of versions ERO.LIM ERO.DIV ERO.LINEAR “Main line of development” CVS parallelisation

ERO code management (2) Development of user friendly interface (“JERO”) in combination with ERO internet webpage

Modelling of 13 CH 4 puffing in ASDEX (1) R [m] Z [m] ERO simulation volume 80° rotation B2-Eirene grid of divertor region

ERO simulation volume (outer divertor): separatrix Modelling of 13 CH 4 puffing in ASDEX (2)

Modelling of 13 CH 4 puffing in ASDEX (3) Plasma parameter (L mode) from B2-Eirene (D. Coster) separatrix

Modelling of 13 CH 4 puffing in ASDEX (4) CH 4 CH 2 CH CH + CC+C mm 80 mm 0 CH 4 Transport of injected CH 4 into outer s=48mm: sticking assumption for hydrocarbons S = 0

C-Deposition from injected CH 4 48mm) into outer divertor: sticking assumption for hydrocarbons S = 0 local deposition: ~70%, losses to PFR: ~30%  PFR SEP SOL  Modelling of 13 CH 4 puffing in ASDEX (5)

Modelling of 13 CH 4 puffing in ASDEX (6) Injection of CH 4 48mm and 88mm) into outer divertor: mm S = 0S = 1S = 0S = 1 Deposition at target70%96%89%99.4% Puffing location deeper in SOL: high local re-deposition even if with S = 0!!!

Further 13 C transport modelling in ASDEX: in co-operation with M. Airila (Helsinki University of Technology) Modelling of 13 CH 4 puffing in ASDEX (7)

Modelling of CH 4 puffing in JET (1) MkIIA: Standard gas fuelled ELMy H-mode, 12 MW (#44029) n e [cm -3 ] RC [cm] ZC [cm] RC [cm] ZC [cm] T e [eV]

Zero sticking of hydrocarbons CD y, Ehrhardt-Langer Location of injection: strike point Profiles of re-deposition for various incoming ion fluxes: Amount of re-deposition: 88% 89% 87% vertical plate base plate Modelling of CH 4 puffing in JET (2)

Modelling of CH 4 puffing in JET (3) Amount of re-deposition: 76% 72% 66% vertical plate base plate Zero sticking of hydrocarbons CD y, Ehrhardt-Langer Location of injection: center of base plate (SOL) Profiles of re-deposition for various incoming ion fluxes:

Summary: re-deposition of injected CD 4 and C 2 D 4 Injection at strike point:Injection at center of base plate (SOL): No significant difference in re-deposition of puffed CD 4 and C 2 D 4 Puffing at strike point: no significant dependence on flux Puffing at center of base plate (SOL): decreasing re-deposition with increasing flux Modelling of CH 4 puffing in JET (4)