Waves and Sound Honors Physics.

Slides:



Advertisements
Similar presentations
Applications of Resonance Harmonics and Beats. Beats Not that kind Not that kind This is due to the interference of two waves of similar frequencies.
Advertisements

Resonance If you have ever blown across the top of a bottle or other similar object, you may have heard it emit a particular sound. The air in the bottle.
The Vibrating String.  During the last lab you explored the superposition of waves.  When two waves or more occupy the same region of a medium at the.
Waves and Sound Honors Physics. What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through.
Resonance: More Practice Resonance occurs when the frequency of the forcing vibration is _________ the natural frequency of the object. A. less thanC.
The Organ Pipe.  During the last two labs you explored the superposition of waves and standing waves on a string.  Just as a reminder, when two waves.
Beats  Different waves usually don’t have the same frequency. The frequencies may be much different or only slightly different.  If the frequencies are.
A.2 Standing (Stationary) Waves
RESONANCE & SOUND Amplification. A IR C OLUMN  When a wave source is held at the open end of a pipe, it sends down a wave that reflects from the closed.
Waves and Sound AP Physics 1. What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through.
Standing Waves When an incident wave interferes with a reflected wave to form areas of constructive and destructive interference. When an incident wave.
THE PHYSICS OF MUSIC ♫. MUSIC Musical Tone- Pleasing sounds that have periodic wave patterns. Quality of sound- distinguishes identical notes from different.
Chapter 12 Objectives Differentiate between the harmonic series of open and closed pipes. Calculate the harmonics of a vibrating string and of open and.
Musical Instruments. Standing Waves  Waves that reflect back and forth interfere.  Some points are always at rest – standing waves.
Vibrating Strings and Resonance in Air Columns. String Instruments  In many musical instruments, the source sets a string into vibration  Standing waves.
Sound quality and instruments  Different notes correspond to different frequencies  The equally tempered scaled is set up off of 440 A  meaning the.
13.3. Harmonics A vibrating string will produce standing waves whose frequencies depend upon the length of the string. Harmonics Video 2:34.
Stringed Instruments (Ex. Guitars, pianos, violins)  Vibrating the string sets up a standing wave, the vibration from the string resonate the sounding.
Stationary Waves Stationary waves are produced by superposition of two progressive waves of equal amplitude and frequency, travelling with the same speed.
WAVES AND SOUND 5% AP Physics B Waves – what is a wave? Wave – a vibration or disturbance in space Mechanical Wave requirements: 1.Source of disturbance.
Waves and Sound Level 1 Physics.
Chapter 12 Section 3: Harmonics.
Waves and Sound AP Physics B. What is a wave A ______ is a vibration or disturbance in space. A _____________ is the substance that all SOUND WAVES travel.
Sound Waves The production of sound involves setting up a wave in air. To set up a CONTINUOUS sound you will need to set a standing wave pattern. Three.
Sound.
Waves Topic 11.1 Standing Waves. v The Formation.
The Physics of Musical Instruments
The Physics of Music Waves
Harmonics Review Music to my ears?. Standing Waves Vibrating Strings Each standing wave has a different frequency Single pitches = Multiple frequencies.
April 14 – April 15. What is the definition of a wave? Example: Sound from a speaker traveling through air to my ear. All waves ‘travel’ or carry energy.
Standing sound waves. Sound in fluids is a wave composed of longitudinal vibrations of molecules. The speed of sound in a gas depends on the temperature.
Stationary Waves Stationary waves are produced by superposition of two progressive waves.
 The principle of superposition for two identical waves traveling in opposite directions.  Snapshots of the blue and the green waves and their red sum.
 Wave energy depends on amplitude, the more amplitude it has, the more energy it has.
15.1 Properties and Detection of Sound Interference of sound waves.
Traveling Waves Standing Waves Musical Instruments Musical Instruments all work by producing standing waves. There are three types of instrument.
Adding waves can be positive or negative.. Superposition  When two (or more) waves interfere (meet… they’re at the same place at the same time) the resultant.
Sound Part II  Music What is the study of sound called?  Acoustics.
Music Music is a “ pleasant ” sound (longitudinal) wave. The pitch is the frequency of the wave. The loudness is the amplitude of the wave. Music is made.
Wave Interference and Standing Waves. Interference Constructive interference – Peak and peak – Trough and trough += Destructive interference – Peak and.
Waves and Sound AP Physics B.
Standing Wave & Resonance
Resonance , Standing Waves, and the Doppler Effect.
Musical Instruments.
Waves and Sound.
Mechanical Wave Interactions
Notes 21.2: RESONANCE.
Wave Behavior in Sound Waves and Resonance!
Sound.
Standing Waves.
Chapter 13 Objectives Explain why resonance occurs.
Standing waves.
Standing Waves Resonance.
Standing Waves Waves and Sound
Standing Waves 14.8 When a traveling wave reflects back on itself, it creates traveling waves in both directions The wave and its reflection interfere.
Standing waves review A standing wave occurs when there is constructive interference between a wave and it reflections from a boundary.
Resonance Waves and Sound
Waves and Sound AP Physics B.
Waves and Sound Honors Physics.
THE PHYSICS OF MUSIC ♫.
Waves and Sound AP Physics B.
The Science and Electronics of Sound Beacon High School
14-7 Superposition and Interference
Waves and Sound AP Physics 1.
Waves and Sound.
Waves and Sound AP Physics B.
Waves and Sound AP Physics 1.
Waves Topic 11.1 Standing Waves.
Waves and Sound AP Physics 1.
Waves and Sound Physics.
Presentation transcript:

Waves and Sound Honors Physics

Standing Waves A standing wave is produced when a wave that is traveling is reflected back upon itself. There are two main parts to a standing wave: Antinodes – Areas of MAXIMUM AMPLITUDE Nodes – Areas of ZERO AMPLITUDE.

Sound Waves Resonance – when a FORCED vibration matches an object’s natural frequency thus producing vibration, sound, or even damage.

Sound Waves The production of sound involves setting up a wave in air. To set up a CONTINUOUS sound you will need to set a standing wave pattern. Three LARGE CLASSES of instruments Stringed - standing wave is set up in a tightly stretched string Percussion - standing wave is produced by the vibration of solid objects Wind - standing wave is set up in a column of air that is either OPEN or CLOSED

Closed Pipes Have an antinode at one end and a node at the other. Each sound you hear will occur when an antinode appears at the top of the pipe. You get your first sound or encounter your first antinode when the length of the actual pipe is equal to a quarter of a wavelength. This FIRST SOUND is called the FUNDAMENTAL FREQUENCY or the FIRST HARMONIC.

Closed Pipes - Harmonics Harmonics are MULTIPLES of the fundamental frequency. In a closed pipe, you have a NODE at the 2nd harmonic position, therefore NO SOUND is produced

Closed Pipes - Harmonics In a closed pipe you have an ANTINODE at the 3rd harmonic position, therefore SOUND is produced. CONCLUSION: Sounds in CLOSED pipes are produced ONLY at ODD HARMONICS!

Open Pipes OPEN PIPES- have an antinode on BOTH ends of the tube. You will get your FIRST sound when the length of the pipe equals one-half of a wavelength.

Open Pipes - Harmonics Since harmonics are MULTIPLES of the fundamental, the second harmonic of an “open pipe” will be ONE WAVELENGTH. The picture above is the SECOND harmonic

Open pipes - Harmonics Another half of a wavelength would ALSO produce an antinode on BOTH ends. In fact, no matter how many halves you add you will always have an antinode on the ends The picture above is the THIRD harmonic or the SECOND OVERTONE. CONCLUSION: Sounds in OPEN pipes are produced at ALL HARMONICS!

String Instruments When you pluck a stringed musical instrument, the string vibration is composed of several different standing waves. The lowest frequency carried by the string is called the first harmonic or the fundamental. First Harmonic Fundamental

(It is the first tone above the fundamental.) The next higher frequency standing wave pattern looks like the following. Second Harmonic First Overtone Since this frequency is twice the first harmonic, it is referred to as the second harmonic. (It is the first tone above the fundamental.)

Beats Happens when two slightly different frequencies interfere Often used in tuning