Spectral Analysis of Decimetric Solar Bursts Variability R. R. Rosa 2, F. C. R. Fernandes 1, M. J. A. Bolzan 1, H. S. Sawant 3 and M. Karlický 4 1 Instituto.

Slides:



Advertisements
Similar presentations
Modeling the fine-scale turbulence within and above an Amazon forest using Tsallis generalized thermostatistics. I. Wind velocity Maurício J. A. Bolzan,
Advertisements

Investigating the Origin of the Long-Duration High- Energy Gamma-Ray Flares Gerry Share, Jim Ryan and Ron Murphy (in absentia) Steering Committee Overseer.
Flare energy release and wave dynamics in nearby sunspot Solar and Stellar Flares, Observations, simulations and synergies June , 2013, Prague,
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
SOLAR FLARES Marina Rodríguez Baras 1. Solar activity Why do we study it? Close study of the internal processes of a star. Preventing the effects on the.
H.N. Wang 1 , H. He 1, X. Huang 1, Z. L. Du 1 L. Y. Zhang 1 and Y. M. Cui 2 L. Y. Zhang 1 and Y. M. Cui 2 1 National Astronomical Observatories 2 National.
References [1] Handy, B.N., et al. Solar Phys., 187, 229, [2] Aschwanden, M.J., & Alexander, D., Solar Phys., 204, 91, [3] Khodachenko, M.L.,
Study of Magnetic Helicity Injection in the Active Region NOAA Associated with the X-class Flare of 2011 February 15 Sung-Hong Park 1, K. Cho 1,
1 BRAZILIAN SOLAR SPECTROSCOPE RECENT OBSERVATIONS WITH THE BRAZILIAN SOLAR SPECTROSCOPE BSS Francisco C. R. Fernandes FMI / DAS / INPE BRAZIL HESSI Data.
Revisiting Multifractality of High Resolution Temporal Rainfall: New Insights from a Wavelet-Based Cumulant Analysis Efi Foufoula-Georgiou ( Univ. of Minnesota.
Electron Acceleration at the Solar Flare Reconnection Outflow Shocks Gottfried Mann, Henry Aurass, and Alexander Warmuth Astrophysikalisches Institut Potsdam,
Properties of Solar Wind ULF Waves Associated with Ionospheric Pulsations A D M Walker, & J A E Stephenson, & S Benz School of Physics University of KwaZulu-Natal.
Coronal hard X-rays prior to RHESSI H. S. Hudson Space Sciences Lab, UC Berkeley.
Reverse Drift Bursts in the GHz Band and their Relation to X-Rays František Fárník and Marian Karlický Astronomical Institute Academy of Sciences.
Investigations of Spatially Resolved 1.4 GHz Radio Activity associated with Solar X-Ray Microflares H.S. Sawant¹,Krucker S, S. Kane², M. Karlicky³, S.
Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.
V.I. Abramenko, V.B. Yurchyshyn, H. Wang, T.R. Spirock, P.R. Goode Big Bear Solar Observatory, NJIT Crimean Astrophysical Observatory, Ukraine
Multifractal structure of turbulence in magnetospheric cusp E.Yordanova (1, 2), M. Grzesiak (1), A.W.Wernik (1), B. Popielawska (1), K.Stasiewicz (3) (1)
Solar X-ray Searches for Axions H. S. Hudson SSL, UC Berkeley
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
Dale E. Gary Professor, Physics, Center for Solar-Terrestrial Research New Jersey Institute of Technology 1 03/15/2012Preliminary Design Review.
References Cohen, L., Proc. IEEE, 77, 72, 1989; Shkelev, E.I., Kislyakov, A.G., Lupov, S, Yu., Radiophys.& Quant.Electronics, 45, 433, Wigner, E.P.,
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
The Role of ULF wave activity in solar wind-magnetosphere interactions and magnetospheric electron acceleration V. Pilipenko, N. Romanova, M. Engebretson,
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
The principle of SAMI and some results in MAST 1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, , China 2. Culham Centre.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
The Influence of the Return Current and Electron Beam on the EUV and X-Ray Flare Emission E. Dzifčáková, M. Karlický Astronomical Institute of the Academy.
Response of the Polar Cusp and the Magnetotail to CIRs Studied by a Multispacecraft Wavelet Analysis Axel Korth 1, Ezequiel Echer 2, Fernando L. Guarnieri.
Cusp turbulence as revealed by POLAR magnetic field data E. Yordanova Uppsala, November, 2005.
Simultaneous monitoring observations of solar active regions at millimeter wavelengths at radio telescopes RT-7.5 BMSTU (Russia) and RT-14 Metsahovi radio.
TYPE IV BURSTS AT FREQUENCIES MHz V.N. Melnik (1), H.O. Rucker (2), A.A. Konovalenko (1), E.P. Abranin (1), V.V. Dorovskyy(1), A. A. Stanislavskyy.
ESWW Bruxelles,M. Messerotti & H. Lundstedt 1 Advancing Solar Activity Understanding: The Mutual Role of Space Weather Activities M. Messerotti.
Variability of radio-quiet AGN across the spectrum: facts and ideas B. Czerny Copernicus Astronomical Center, Warsaw, Poland.
Cosmic Ray flux modulation in different timescales observed with the CARPET detector between 2006 and 2012 (CASLEO, 2550 m, Rc = 9.65 GV) J.-P. Raulin,
Type III radio bursts observed with LOFAR and Nançay radioheliograph Jasmina Magdalenić 1, C. Marqué 1, A. Kerdraon 2, G. Mann 3, F. Breitling 3, C. Vocks.
Feodor Vybornov, Alexander Pershin, Alexander Rakhlin, Olga Sheiner Features of modern diagnostic methods of ionospheric turbulence Radiophysical Research.
Stephen White Space Vehicles Directorate Air Force Research Laboratory Solar Radio Bursts with LWA-1: DRX Observations.
Investigation of different types radio sources by IPS method at 111MHz S.A.Tyul’bashev Pushchino Radio Astronomy Observatory, Astro Space Center of P.N.Lebedev.
ILWS - International Living With Star The Brazilian Decimetric Array (BDA) Contribution to Space Weather Investigations H.S. Sawant, J.R. Cecatto, F.C.R.
ROCKENBACH, M. 1; DAL LAGO, A. 2; MUNAKATA, K. 3; KATO, C
Spectral Signature of Emergent Magnetic Flux D1 神尾 精 Solar Seminar Balasubramaniam,K.S., 2001, ApJ, 557, 366. Chae, J. et al., 2000, ApJ, 528,
SH 51A-02 Evolution of the coronal magnetic structures traced by X-ray and radio emitting electrons during the large flare of 3 November 2003 N.Vilmer,
I3/CA Europlanet - EC Contract Space Research Institute Austrian Academy of Sciences Non-thermal radio emission fundamentals:
The Space Weather Week Monique Pick LESIA, Observatoire de Paris November 2006.
SOLAR RADIO PHYSICS RESEARCH IN INDONESIA
Flare-Associated Oscillations Observed with NoRH Ayumi Asai (NSRO) Nobeyama Symposium 2004 : 2004/10/26.
Instituto Nacional de Pesquisas Espaciais – Laboratório Associado de Plasma 1 3rd IAEA TM on ST – STW2005 Determination of eddy currents in the vacuum.
1 Yongliang Song & Mei Zhang (National Astronomical Observatory of China) The effect of non-radial magnetic field on measuring helicity transfer rate.
Transient response of the ionosphere to X-ray solar flares Jaroslav Chum (1), Jaroslav Urbář (1), Jann-Yenq Liu (2) (1) Institute of Atmospheric Physics,
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
Stuart D. BaleFIELDS SOC CDR – Science Requirements Solar Probe Plus FIELDS SOC CDR Science and Instrument Overview Science Requirements Stuart D. Bale.
ITT: SEP forecasting Mike Marsh. Solar radiation storms Solar energetic particles (SEPs)
MHD Turbulence driven by low frequency waves and reflection from inhomogeneities: Theory, simulation and application to coronal heating W H Matthaeus Bartol.
Agency, version?, Date 2012 Coordination Group for Meteorological Satellites - CGMS Add CGMS agency logo here (in the slide master) Coordination Group.
NATIONAL INSTITUTE FOR SPACE RESEARCH – INPE/MCT SOUTHERN REGIONAL SPACE RESEARCH CENTER – CRS/CCR/INPE – MCT FEDERAL UNIVERSITY OF SANTA MARIA - UFSM.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
ESSEM Earth System Science and Environmental Management 17/11/ ESWW6-2 M. Messerotti, A. Marassi M. MESSEROTTI 1,2,3, A. MARASSI 1 1 INAF-Astronomical.
R. Miteva1, K.-Ludwig Klein1, Ines Kienriech2,
Dong Li Purple Mountain Observatory, CAS
Chengming Tan National Astronomical Observatories
WGISS-45 Meeting Joint with WGCV
Estimates of the forthcoming solar cycles 24 and 25
Nonthermal distributions in the solar and stellar coronae
Series of high-frequency slowly drifting structure mapping the magnetic field reconnection M. Karlicky, A&A, 2004, 417,325.
SMALL SEP EVENTS WITH METRIC TYPE II RADIO BURSTS
Testing for Multifractality and Multiplicativity using Surrogates
Presentation transcript:

Spectral Analysis of Decimetric Solar Bursts Variability R. R. Rosa 2, F. C. R. Fernandes 1, M. J. A. Bolzan 1, H. S. Sawant 3 and M. Karlický 4 1 Instituto de Pesquisa e Desenvolvimento (IP&D) Universidade do Vale do Paraíba (UNIVAP) São José dos Campos, SP, Brazil 2 Laboratório Associado de Computação e Matemática Aplicada (LAC) 3 Divisão de Astrofísica Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, SP, Brazil 4 Astronomical Institute Academy of Sciences of the Czech Republic Ondrejov, Czech Republic

Outline Decimetric Solar Bursts (DSB) DSB Spectral Analysis Classifying Variability Pattern Using the Var[C(L)] and  H A Case Study for Space Weather Concluding Remarks

Decimetric Solar Bursts Data (Time Series): Brazilian Solar Spectroscope (BSS) (INPE-São José dos Campos) GHz, 3MHz, 3ms, 2-3 s.f.u, 100 channels, 11:00-19:00 UT Ondrejov Radio Observatory (Czech Republic) 3GHz, 10ms, 4MHz

GHz SFU Starting 17:13:51.48 UT 25/9/2001

SFU June :34:00 UT SFU 3GHz

Power spectra: 1/f  with 1.8 <   2  Complex scaling dynamics (hybrid components: plasma turbulence)   10% Previous Results from Spectral Analysis (Power Spectra) M. Karlický et al. A&A 375, (2001) Rosa et al. Adv Space Res –851(2008) Log f logP(w) α=2(1-H) (Mandelbrot, 1985) H  α H Non-homogeneous scaling ptocess

Non-homogeneous Stochastic Process  H and C(L) Var[C(L)] = (1/N)  i (C i -  C  ) 2 Estimating a more robust  H … C(L)  L -   H = 1-(  /2) Peitgen, Jurgen & Saupe Chaos and Fractals, Springer 1993 C(L) is the Auto-correlation function=> Non-stationary intermittent process Problem: Bias in  > 10%  H : “Holder exponent” Non-homogeneous scaling function w(1/L)  k  H

 H : Wavelet Transform Modulus Maxima (WTMM) “Singularity Spectrum” (H)(H) where α H (t 0 ) is the Holder exponent (or singularity strength). Halsey et al., PRA 33:1141, 1986; Arneodo et al; Physica A 213:232, Dynamical Process Var(C)(5%)  H White Noise /f /f Lorenz Multip N=1024 p-Model: 1<  H (L)<3 Characterizes  Non-homogeneous multi-scaling process: p-Model

Dynamical Process Var(C)(5%)  H (1%) White Noise /f /f Lorenz Multip pModel GHz GHz GHz N=L= GHz 2GHz 3GHz 1.6GHz and 2.0 GHz (6 TS) 3 GHz (1 TS)

Solar Flares are classified by their x-ray flux in the Angstrom band as measured by the NOAA GOES-8 satellite. On June 6, 2000, two solar flares from active region 9026 registered as powerful X-class eruptions. A Case Study for Space Weather

June 6, 2000 solar flares (X2.3) 15:00-16:35 UT (NOAA AR 9026)

Var[C(L)] = (1/N)  i (C i -  C  ) 2  1min before the flare

Concluding Remarks: This advanced spectral analysis suggested the influence of both, nonlinear oscillations in the magnetic field (A) + turbulent interaction between electron beams and evaporation shocks (B), on the decimetric radio emission energy source (turbulent non-homogeneous MHD p-model cascade) Thank you for your attention. LAC - CTE The results suggest Var[C( L)] or Var[C] x  H as a new metric for Solar radio flux monitoring VLADA (Virtual Lab for Advanced Data Analysis) (EMBRACE)

V=9 g=9 =16 =20 Time Series Analysis (High sensitivity): Gradient Pattern Analysis “Asymmetry Coefficient”: G= (  - g)/g and Lim g   G=2 Assireu et al, Physica D 168(1):397, 2002.

G=1.87 G=1.82

Escala global Escala local G= (  - g)/g  G(ℓ) 

There are 16 time series with 1024 points – square matrices 32x32 The signal is decompose by Daubechies Discrete Wavelet (Db8) (see an example for 512 points) Gradient Spectra G(f)

Gradient Spectra for Turbulent-like Short Time Series  G =  1/N  [ G i ( ℓ)-  G( ℓ  ]