Prof R T Kennedy 1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL.

Slides:



Advertisements
Similar presentations
SMPS - Switch Mode Power Supply
Advertisements

1 Series Resonant Converter with Series-Parallel Transformers for High Input Voltage Applications C-H Chien 1,B-R Lin 2,and Y-H Wang 1 1 Institute of Microelectronics,
M2-3 Buck Converter Objective is to answer the following questions: 1.How does a buck converter operate?
NEWMAR 115 – 12 – 20AU Full-Wave Rectifier with Choke-Input Filter.
DC Choppers 1 Prof. T.K. Anantha Kumar, E&E Dept., MSRIT
Ch6 DC-DC Converters 6-1 Linear voltage regulators Fig. 6.1 Adjustingbasecurrent, => linear DC-DC converter orlinear regulator Thetransistor operates in.
EE462L, Spring 2014 DC−DC Boost Converter
Instructor: Po-Yu Kuo (郭柏佑) 國立雲林科技大學 電子工程系
7. Introduction to DC/DC Converters
Introduction to DC-DC Conversion – Cont.
Three Phase Controlled Rectifiers
Buck Regulator Architectures 4.1 Overview. Buck-Switching Converters 2 SynchronousNon-Synchronous (External-FET) Controllers (Internal-FET) Regulators.
CIRCUITS, DEVICES, AND APPLICATIONS Eng.Mohammed Alsumady
Chapter 20 Quasi-Resonant Converters
ECE 442 Power Electronics1 NEWMAR 115 – 12 – 20AU Full-Wave Rectifier with Choke-Input Filter.
9/29/2004EE 42 fall 2004 lecture 131 Lecture #13 Power supplies, dependent sources, summary of ideal components Reading: Malvino chapter 3, Next:
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
ECE 442 Power Electronics1 Step Up Converter Close the switch to store energy in the inductor L Open the switch to transfer the energy stored in L to the.
Switching-Mode Regulators
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Series resonant converter.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Power Electronics Lecture-10 D.C to D.C Converters (Choppers)
升壓式轉換器 Boost Converter Instructor: Po-Yu Kuo ( 郭柏佑 ) 國立雲林科技大學 電子工程系.
Copyright by UNIT III DC Choppers 4/17/2017 Copyright by
Chapter 20 Quasi-Resonant Converters
Waveforms of the half-wave ZCS quasi-resonant switch cell
DC-DC Switch-Mode Converters
Instrumentation & Power Electronics
Buck Converter + V in - + V OUT - Assumptions for First Order Analysis: All components are ideal, including voltage source Output ripple voltage is negligible.
Power Electronics Notes 07A Introduction to DC/DC Converters
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
Buck Regulator Architectures
CHAPTER 18 Power Supplies. Objectives Describe and Analyze: Power Supply Systems Regulation Buck & Boost Regulators Flyback Regulators Off-Line Power.
DC−DC Buck Converter 1. DC-DC switch mode converters 2.
Lecture # 12&13 SWITCHING-MODE POWER SUPPLIES
Power Management for Embedded Systems. Power requirement for Embedded Micro Systems Multiple supply voltages Small size in all components, L R C etc High.
Prof R T KennedyPOWER ELECTRONICS 21. Prof R T KennedyPOWER ELECTRONICS 22 Class D audio amplifiers switching - PWM amplifiers -V cc.
Chapter 3 DC to DC Converters
A NOVEL CONTROL METHOD OF DC-DC CONVERTERS Dr.M.Nandakumar Professor Department of Electrical engineering Govt. Engineering College Thrissur 1 Dept. of.
DC−DC Buck Converter.
Prof R T Kennedy 1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL.
EET426 Power Electronics II
SWITCH-MODE POWER SUPPLIES AND SYSTEMS Silesian University of Technology Faculty of Automatic Control, Electronics and Computer Sciences Ryszard Siurek.
Linear Power Supplies, Switched Mode Power Supply
Prof R T KennedyPOWER ELECTRONICS 21 EET 423 POWER ELECTRONICS -2.
Prof R T Kennedy1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 IDEAL TRANSFORMER MAGNETIC DEVICE ELECTRICAL ISOLATION FUNCTION: TRANSFER ENERGY SCALE.
Chapter 1 Common Diode Applications Basic Power Supply Circuits.
6/22/2016 “IN THE NAME OF ALLAH THE MOST MERCIFUL AND THE MOST BENEFICIAL”
KAIST Power Electronics Lab, Dept. of EE., KAIST LG Semicon Hall (N24) 4102, 373-1, Guseong-dong, Yuseong-gu, Daejeon , Korea. TEL: ,
Power Electronics and Power Conversion, Assiut University 1 Photovoltaic Systems Ahmed G. Abo-Khalil.
بحث مشترك منشور فى مؤتمر دولى متخصص (منشور ، التحكيم علي البحث الكامل) B. M. Hasaneen and Adel A. Elbaset البحث التاسع 12 th International Middle East.
Switching-Mode Regulators
UNIT III DC Choppers.
EET 423 POWER ELECTRONICS -2
EET 423 POWER ELECTRONICS -2
EET426 Power Electronics II
DC-DC PWM Converters Lecture Note 5.
AC Inlet & AC Input Filter
DC Choppers 1 MH1032/brsr/A.Y /pe/DC CHOPPERS
Diode Rectifiers Chapter 5.
Power Converter’s Discontinuous Current Mode Operation
UNIT-7 CHOPPERS 12/1/2018.
Modeling of Dc-dc Boost Converter in Discontinuous Conduction Mode
Reading: Malvino chapter 3, Next: 4.10, 5.1, 5.8
DC-DC Switch-Mode Converters
Dr. Unnikrishnan P.C. Professor, EEE
POWER ELECTRONICS DC-DC CONVERTERS (CHOPPERS) PART 2
POWER ELECTRONICS DC-DC CONVERTERS (CHOPPERS) PART 1
Chapter 5 Isolated Switch-Mode dc-to-dc Converters
Presentation transcript:

Prof R T Kennedy 1 EET 423 POWER ELECTRONICS -2

Prof R T Kennedy2 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL I out a b V out

Prof R T Kennedy3 BUCK CONVERTER CIRCUIT VOLTAGES E i n V out V ds a b V L,a-b C R L V fwd

Prof R T Kennedy4 SUB INTERVAL EQUIVALENT CIRCUITS V ds = 0 a b V L,a-b = E in -V out E i n C R V out L MOSFET ON RECTIFIER OFF V fwd = -E in r ds,on

Prof R T Kennedy5 SUB INTERVAL EQUIVALENT CIRCUITS E i n C R a b V out V fwd = 0 V ds = E in MOSFET OFF RECTIFIER ON L a b V L,a-b = -V out a b

Prof R T Kennedy6 E in =V ds +(- V fwd ) V L + V out = -V fwd E in VLVL V out V fwd V ds 0 V gs

Prof R T Kennedy7 E in = V ds + (-V fwd ) E in VLVL V out V fwd V ds 0 V gs - V fwd

Prof R T Kennedy8 SMPS OPERATION QUANTIZED POWER/ENERGY TRANSFER VOLTAGE REGULATION

Prof R T Kennedy9 VOLTAGE TRANSFER FUNCTION ANALYSIS ENERGY BALANCE ENERGY BALANCE POWER BALANCE POWER BALANCE VOLT-TIME INTEGRAL VOLT-TIME INTEGRAL

Prof R T Kennedy10 ‘IDEAL’ BUCK ANALYSIS CCM ENERGY BALANCE APPROACH INDUCTOR CURRENT I L,M I L,m I L,av = I out 0 t

Prof R T Kennedy11 SUB INTERVAL -1: MOSFET ON E i n C R L OFF a b ON ENERGY STORED INPUT ENERGY LOAD ENERGY from source

Prof R T Kennedy12 SUB INTERVAL -2: RECTIFIER ON E i n C R L ON a b OFF ENERGY Discharge NO INPUT ENERGY LOAD ENERGY from inductor

Prof R T Kennedy13 D sw E in V out

Prof R T Kennedy14 ‘IDEAL’ BUCK ANALYSIS CCM POWER BALANCE APPROACH INPUT CURRENT = MOSFET CURRENT I in,av = I ds,av I L,m I L,M I out 0 D sw T D fwd T I in t

Prof R T Kennedy15 FARADAY’S VOLT-TIME INTEGRAL INDUCTOR VOLTAGE V1V1 t1t1 0 INDUCTOR CURRENT t2t2 V2V2 0 t t I m I M T current start and finish at same value EQUAL AREAS

Prof R T Kennedy16 ‘IDEAL’ BUCK ANALYSIS CCM VOLT-TIME INTEGRAL APPROACH INDUCTOR VOLTAGE D sw T D fwd T 0 ILIL VLVL 0 E in -V out -V out t area B area A

Prof R T Kennedy17 ‘IDEAL’ BUCK ANALYSIS CCM VOLT-TIME INTEGRAL APPROACH INDUCTOR VOLTAGE

Prof R T Kennedy18 ‘ideal’ BUCK CONVERTER CCM voltage & current waveforms refer to msw notelet refer to msw notelet

Prof R T Kennedy19 V out 0 0 D sw TD fwd T D fwd = 1-D sw V gs I out IcIc ILIL I ds I fwd E in V ds V fwd VLVL V out E i n R I out IC IC L C I ds IL IL V ds I out I fwd V fwd V gs f sw VL VL

Prof R T Kennedy20 INDUCTOR CURRENT WAVEFORMS CCM or DCM operational mode CCM or DCM operational mode component current stress component current stress capacitor ripple current capacitor ripple current output voltage ripple output voltage ripple converter efficiency converter efficiency closed loop regulation performance closed loop regulation performance

Prof R T Kennedy21 INDUCTOR CURRENT v INDUCTANCE REDUCTION in L D sw TD fwd T 0 0 I out E in - V out -V out VLVL ILIL t

Prof R T Kennedy22 INDUCTOR CURRENT v INDUCTANCE REDUCTION in L D sw TD fwd T 0 0 I out E in -V out -V out VLVL ILIL t increased I sw,max I fwd,max I C,ripple V out,ripple

Prof R T Kennedy23 INDUCTOR CURRENT

Prof R T Kennedy24 INDUCTOR CURRENT 0 ILIL t I out D sw = 0.2 D sw = 0.5 D sw = 0.8 D sw > 0.5 D sw < 0.5 D sw = 0.5

Prof R T Kennedy25 INDUCTOR CURRENT 0 ILIL t UPSLOPE DOWNSLOPE

Prof R T Kennedy26 INDUCTOR PEAK-PEAK RIPPLE CURRENT

Prof R T Kennedy27 CCM-DCM BOUNDARY

Prof R T Kennedy28 CCM-DCM BOUNDARY boundary

Prof R T Kennedy29 CCM-DCM BOUNDARY boundary CCM DCM

Prof R T Kennedy30 CCM / DCM determined by R CCM-DCM BOUNDARY L D sw f sw constant to ensure a desired CCM does not transfer to DCM specify a minimum load current (maximum R) avoid open circuit operation CCM DCM INCREASE R ‘light loading’

Prof R T Kennedy31 CCM / DCM determined by L CCM-DCM BOUNDARY R D sw f sw constant to ensure a desired CCM does not transfer to DCM design for CMM at lowest inductance including  L v  I CCM DCM DECREASE L

Prof R T Kennedy32 CCM / DCM determined by f sw CCM-DCM BOUNDARY R D sw f sw constant to ensure a desired CCM does not transfer to DCM design for CMM at lowest frequency CCM DCM DECREASE f sw

Prof R T Kennedy33 CCM / DCM determined by D sw CCM-DCM BOUNDARY L R f sw constant to ensure a desired CCM does not transfer to DCM design for CMM at lowest duty cycle CCM DCM DECREASE D sw

Prof R T Kennedy34 LINE & LOAD REGULATION DCM CCM

Prof R T Kennedy35 LINE & LOAD REGULATION DCM CCM

Prof R T Kennedy36 ILIL ILIL ILIL t t t

Prof R T Kennedy37 ILIL ILIL ILIL t t t 

Prof R T Kennedy38 ILIL ILIL ILIL t t t 

Prof R T Kennedy39 OUTPUT EFFECTS E i n C L V out = 0 s/c I in t 0

Prof R T Kennedy40 OUTPUT EFFECTS E i n C L V out  E in o/c

Prof R T Kennedy41 POWER - UP EFFECT E i n C R V out V c = 0 L

Prof R T Kennedy42 POWER - DOWN EFFECT E i n C R V out L