Laboratoire de Chimie-Physique CNRS – Université Paris-Sud UMR 8000 91405 ORSAY Cs 2 Te photocathodes at ELYSE.

Slides:



Advertisements
Similar presentations
AREAL Laser overview Advanced Research Electron Accelerator Laboratory Aghasi Lorsabyan.
Advertisements

ERLP Overview Hywel Owen ASTeC Daresbury Laboratory.
Paul Emma LCLS FAC April 16, Initial Experience with Injector Commissioning P. Emma, et al. Facilities Advisory Committee.
Latest results from the upgraded PITZ facility Chase Boulware, DESY, Zeuthen, Germany, for the PITZ collaboration cathode laser conditioning test stand.
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
Rong Xiang I I Photocathodes for Rossendorf SRF gun Rong Xiang for HZDR SRF-gun team 1 st Topical Workshop on laser based particle.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
AWAKE electron source New Electron Source WP at CERN
The Fermilab Photo-Injector Jean-Paul Carneiro (Fermilab & Université Paris XI) For the A0 group (N. Barov, M. Champion, D. Edwards, H. Edwards, J. Fuerst,
S. Manz 1*, A. Casandruc 1, D. Zhang 1, J. Hirscht 1, S. Bayesteh 3, S. Keskin 1, J. Nicholls 4, T. Gehrke 3, F. Mayet 3, M. Hachmann 3, M. Felber 2, S.
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
Summary of issues. RF-Gun cavity – Disk and washer (DAW) : very fast RF ageing, 2 MeV is not enough. – Quasi travelling wave side couple structure : Lower.
Low Emittance RF Gun Developments for PAL-XFEL
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
IWLC - 21st october 2010Califes CTF3 probe beam - Wilfrid Farabolini1 CTF3 Probe Beam Status 1.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
F Photoinjector for the ILC test facility at Fermilab Sergei Nagaitsev Fermilab May 24, 2007.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Institute of Radiation Physics Jochen Teichert Forschungszentrum Dresden-Rossendorf Radiation Source ELBE J. Teichert, A. Arnold, H. Büttig,
Status of the Photocathode R&D for ATF RFgun N.Terunuma (KEK)
–10.06 Milan Italy LUCX system and dark current (1) LUCX project (2) Phase Ⅰ and results (3) Phase Ⅱ and dark current Liu shengguang and LUCX.
G5 Design Review, April 24, 2009 Gun to 5cell Cavity Test: Overview Dmitry Kayran G5 test Design Review April,
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
Cs 2 Te Photocathodes for CTF3 Photoinjectors R. LOSITO - CERN 4/10/2006.
Electron Source Design Dr Tim Noakes ASTeC, STFC Daresbury Laboratory.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
1/26 WSHQE–October 4-6, 2006 L. Monaco INFN Milano – LASA Photocathode FLASH: Quantum Efficiency (QE) L. Monaco Work supported by the European.
First Electrons at the Fermilab superconducting test accelerator Elvin Harms Asian Linear Collider Workshop 2015, Tsukuba 24 April 2015.
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
Construction, Commissioning, and Operation of Injector Test Facility (ITF) for the PAL-XFEL November 12, 2013 S. J. Park, J. H. Hong, C. K. Min, I. Y.
European Advanced Accelerator Concepts Workshop, Elba, September 14 th -18 th, 2015Steffen Döbert, BE-RF Electron accelerator for the AWAKE experiment.
X-band Based FEL proposal
Paolo Michelato, Workshop on High QE Photocathodes, INFN-Milano LASA, 4 – 6 October Photocathodes: Present status and future perspectives Paolo Michelato.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Cu,Mg Photoinjectors & LAL projects.
Photo injector dark current at FLASH and efforts for reduction at FLASH and XFEL Svem Lederer Unwanted Beam Workshop 2012 Berlin, Dec 18, 2012.
Development of High Brightness Electron Photoinjectors at ASTeC B.L. Militsyn Accelerator Science and Technology Centre Science & Technology Facility Council,
An Electron source for PERLE
Jun Feng Advanced Light Source Lawrence Berkeley National Laboratory
Dark current measurement at PITZ
Dielectric Wakefield R&D programme at Daresbury Lab.
Phil Oxford , june 18 Photoinjector at.
Summary of SPARC first-phase operations
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
PHIL: A TEST BEAMLINE AT LAL Specifications of PHIL
The PHIN Photoinjector for CTF3
PHIL Photoinjecteur au LAL
Operation of the High-Charge PHIN RF Photoinjector with Cs3Sb Cathodes
Have a chance to operate your own beam at CERN
Cesium Telluride Photocathode Preparation at Argonne
WP11: electron and proton beam testing
Perspectives of SRF gun development for BERLinPro T. Kamps (HZB)
MIT Compact X-ray Source
Experimental Optimization and Characterization of Electron Beams for Generating IR/THz SASE FEL Radiation with PITZ. P. Boonpornprasert, G. Asova1, Y.
Perspectives of SRF gun development for BERLinPro T. Kamps (HZB)
LCLS Commissioning Parameters
Electron Source Configuration
Polarized Positrons at Jefferson Lab
Injector: What is needed to improve the beam quality?
Center for Injectors and Sources
R. Suleiman and M. Poelker October 12, 2018
Status of Cathode System in FZR
Advanced Research Electron Accelerator Laboratory
Compact linear accelerator FLUTE: status update
Electron sources for FCC-ee
INJECTOR (WBS 1.2.1) Jym Clendenin, SLAC April 23, 2002
CLIC Feasibility Demonstration at CTF3
LCLS Injector/Diagnostics David H. Dowell, SLAC April 24, 2002
SuperKEKB required (e+ / e-)
Presentation transcript:

Laboratoire de Chimie-Physique CNRS – Université Paris-Sud UMR ORSAY Cs 2 Te photocathodes at ELYSE

Choice of accelerator & cathode Pump probe experiments (synchro. laser & electrons) Small accelerator room (existing building) Photoinjector High charge > 1 nC High Q.E. (Laser energy max ~ 20 µJ) Long lifetime Cs 2 Te

Specifications for accelerator  Pulse duration  5 ps  Charge  1 nC  Energy from 4 to 9 MeV  Repetition rate  50 Hz  Energy dispersion  2,5 %  Diameter on target  2 à 20 mm choice of L.A.L. (SERA)

Photo-injector Laser – 263 nm electrons R.F. gun Booster photocathode solenoid F = 3 GHz Design same as CERN/CTF For RF gun & cathode preparation Chamber (minor changes) F = 3 GHz

R.F. Gun & Booster F = 3 GHz 10 cm R.F. gun Booster 3 MeV 9 MeV

Femtosecond Laser ~ 3 m transport

Accelerator layout Production of electrons acceleration transport RF gun, solenoid, booster laser Preparation chamber (in situ fabrication) Experimental areas triplet triplet

Accelerator Room

Diagnostics 1 m Faraday cup charge Screen transverse beam size W.C.M. charge – position Horizontal slit energy dispersion Cerenkov radiator pulse width

History n January 2000 building construction –creation of L.C.P. n April 2001 accelerator & laser moving form LAL to LCP n Januray 2002 photocathode preparation chamber installation (CP) n April 2002 first beam – 9 MeV (copper cathode) n June 2002 conditionning cavities : 5 Hz - 10Hz - 25 Hz CP leak, buiding chiller problem… n April st cathode CsTe : 6 nC n May st ps – 1,5 nC – 9 MeV n October st local users … beam production for users, minor changes for accelerator n October nd CsTe photocathode ! n … beam production for users

Photocathode Cs 2 Te -  = 20 mm Cs = 16 nm Te = 20 nm Canon HF Section acc. photocathode inside RF gun Preparation chamber Substrat Copper (polished)

Cathode manipulator Cathode fabrication area Cathode Inside RF gun

Te Cs micro-balance 10 cm Cathode fabrication - -Copper substrat cleaned and outgased (400°C – 1h) - Temperature ~ 110°C - Monitoring of thickness during evaporation Te = 20 nm (10 min) Cs = 15 nm (45 min) QE = 0,5% In operation

Preparation Chamber PC Te et Cs crucibles heater micro-balance

Cs 2 Te lifetime Laser diameter = 15 mm Air exposition

Cs 2 Te deterioration 17 juin 2005

Vaccum conditions n P(PC) ~ 3 x mbar (leak –porosity) n P(PC) ~ 5 x mbar during preparation n P(gun) ~ 5 x mbar (static) n P(gun) ~ 5 x mbar (with RF)

Possible improvements n Add in situ current measurement during evaporation for optimisation n Try Mo substrate n Better outgasing n Add closing valve for separating crucible translator (not much space ) …

Accelerator performance   Pulse duration ~ 6 ps   Charge : 0.1 to 6 nC   Energy from 4 to 9 MeV   Repetition rate : Hz   Energy dispersion 1 %   Diameter on target : 2 à 20 mm

Photo-current – Dark current / 50  = 5,8 nC Iobsc Iph laser Eaxe F = 10 Hz HF = 3 µs Laser = 2,7 µs Direct leg : VD 9 MeV Ea = 70 MV/m Qph = 5,8 nC Qdark = 3,9 nC Qdark/Qph = 67% VD VD1 VD2

Klystron – HF distribution 15MW 6 MW MW

Implantation 2ème sous-sol Aires expérimentales K M A 2ème sous-sol, bâtiment 349

Recouvrement - cerenkov Simulation E.G.S. eau verre 1 cm vide diode air eau e- Lumière Cerenkov Recouvrement des faisceaux air

Yag-Ce – 40 mm (200 µm) VD2 – 9 MeV Fwhm = 2 mm saphir – 25 mm (500 µm) VD2 - 9 MeV 30° view angle Fwhm = 3 mm 25 mm 40 mm Beam size measurement (in air) Exit window (12 µm Al) camera vacuum screen

Pulse duration FWHM = 5,8 ps 9 MeV, Q = 1.6 nC time Wave length 380 nm 620 nm Cerenkov light