The Quasar 1317+520: A Laboratory for Particle Acceleration Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman.

Slides:



Advertisements
Similar presentations
Fermi rules out EC/CMB as the X-ray emission mechanism for 3C 273 Markos Georganopoulos 1,2 Eileen T. Meyer 3 1 University of Maryland, Baltimore County.
Advertisements

Beaming. Beaming LHC  ~7 TeV protons   = 7000.
Multiwavelenth Observations Of Strong Flares From The Tev Blazar 1ES Reporter: 倪嘉阳 Arthor:H.Krawczynski, S.B. Hughes
Method To determine the multiplicity parameter and the magnetization parameter  one can use the dependence on the visible position of the core of the.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
X-ray and optical detection of the radio bent jet in 3C 17 Radio Galaxies in the Chandra Era F. Massaro & D. E. Harris, M. Chiaberge, P. Grandi, F. D.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
24-28 October 2005 Elena Belsole University of Bristol Distant clusters of Galaxies Ringberg Workshop X-ray constraints on cluster-scale emission around.
X-ray synchrotron radiation and particle acceleration Martin Hardcastle University of Bristol, UK with Diana Worrall & Mark Birkinshaw (Bristol), Dan Harris.
Luigina Feretti Istituto di Radioastronomia CNR Bologna, Italy Radio observations of cluster mergers X-Ray and Radio Connections, Santa Fe, NM February.
Ultra Relativisitic Jets in Astrophysics, Banff, July 2005Gelbord et al.: Deep Observations of Quasar Jets Deep X-Ray and Optical Observations of Quasar.
Electron thermalization and emission from compact magnetized sources
Markus B ӧ ttcher Ohio University Athens, OH VHE Gamma-Ray Induced Pair Cascades in Blazars and Radio Galaxies.
Comparing the Jets in M87 & 3C273 D. E. Harris, SAO Biretta, Cheung, Jester, Junor, Marshall, Perlman, Sparks, & Wilson.
VLBI Imaging of a High Luminosity X-ray Hotspot Leith Godfrey Research School of Astronomy & Astrophysics Australian National University Geoff Bicknell,
Svetlana Jorstad Connection between X-ray and Polarized Radio Emission in the Large-Scale Jets of Quasars.
Particles and Fields in Lobes of Radio Galaxies Naoki Isobe (NASDA, MAXI Mission) Makoto Tashiro (Saitama Univ.) Kazuo Makishima (Univ. of Tokyo) Hidehiro.
3C 186 A Luminous Quasar in the Center of a Strong Cooling Core Cluster at z>1 Aneta Siemiginowska CfA Tom Aldcroft (CfA) Steve Allen (Stanford) Jill Bechtold.
XMM results in radio-galaxy physics Judith Croston CEA Saclay, Service d’Astrophysique EPIC consortium meeting, Ringberg, 12/04/05.
The Long, Bright Extended X-ray Jet of OJ287 Alan Marscher & Svetlana Jorstad Boston University Research Web Page:
Astrophysical Jets Robert Laing (ESO). Galactic black-hole binary system Gamma-ray burst Young stellar object Jets are everywhere.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
Sites of Particle Acceleration in Quasar Jets Alan Marscher Boston University Research Web Page:
Models for non-HBL VHE Gamma-Ray Blazars Markus Böttcher Ohio University, Athens, OH, USA “TeV Particle Astrophysics” SLAC, Menlo Park, CA, July 13 – 17,
Numerical Modeling of Electromagnetic Radiation from AGN Jets Based on  -ray emission and spectral evolution of pair plasmas in AGN jets Bottcher et al.
Radio galaxies in the Chandra era AGN jet flows Mark Birkinshaw University of Bristol.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Radio lobes of Pictor A: an X-ray spatially resolved study G.Migliori(1,2,3), P.Grandi(2), G.C.G.Palumbo(1), G.Brunetti(4), C.Stanghellini(4) (1) Bologna.
Multi-wavelength AGN spectra and modeling Paolo Giommi ASI.
Radio-loud AGN energetics with LOFAR Judith Croston LOFAR Surveys Meeting 17/6/09.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
The quasar PKS : Direct evidence for a changing orientation of the central engine. John Wardle (Brandeis), Dan Homan (NRAO), C. C. Cheung & Dave.
The luminous X-ray hotspot in 4C 74.26: jet dynamics at work Mary Erlund Institute of Astronomy, Cambridge, UK A.C. Fabian, K.M. Blundell, C. Moss and.
S. Jorstad / Boston U., USA A. Marscher / Boston U., USA J. Stevens / Royal Observatory, Edinburgh, UK A. Stirling / Royal Observatory, Edinburgh, UK M.
Studying emission mechanisms of AGN Dr. Karsten Berger Fermi School, June ©NASA.
Observations of jet dissipation Robert Laing (ESO/Oxford)
Extended X-ray Emissions from the Radio Galaxies Centaurus B and Fornax A Makoto Tashiro 1, Naoki Isobe 2, Masaya Suzuki 1 Kouichi Ito 1, Keiichi Abe 1,
Quasar large scale jets: Fast and powerful or weak and slow, but efficient accelerators? Markos Georganopoulos 1,2 1 University of Maryland, Baltimore.
1 Juri Poutanen University of Oulu, Finland (Stern, Poutanen, 2006, MNRAS, 372, 1217; Stern, Poutanen, 2007, MNRAS, submitted, astro- ph/ ) A new.
I.Introduction  Recent evidence from Fermi and the VLBA has revealed a strong connection between ɣ -ray emission in AGNs and their parsec-scale radio.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
This composite X-ray (blue)/radio (pink) image of the galaxy cluster Abell 400 shows radio jets immersed in a vast cloud of multimillion degree X-ray emitting.
Magnetic fields and particle content in FRII radio sources Judith Croston CEA Saclay, Service d’Astrophysique, France URJA2005, Banff, 12 th July 2005.
Broadband Properties of Blazars
2005/9/28 X-ray Universe The electron and magnetic field energies in the east lobe of the radio galaxy Fornax A, measured with XMM-Newton. Naoki.
Blazars: VLBA and GLAST Glenn Piner Whittier College.
S. Jorstad / Boston U., USA /St. Petersburg State U., Russia A.Marscher / Boston U., USA M. Lister / Purdue U., USA A. Stirling / U. of Manchester, Jodrell.
Probing the Inner Jet of the Quasar PKS 1510  089 with Multi-waveband Monitoring Alan Marscher Boston University Research Web Page:
We fit the high-state data to a model with three free parameters: the normalizations of the three radiation components. The figure below shows the fit.
The Chandra/SWIRE Survey: Radio Properties Of X-Ray Selected AGN Manuela Molina INAF/IASF Milano AGN9 – Ferrara, 24/27 May 2010 In collaboration with:
Modeling the Emission Processes in Blazars Markus Böttcher Ohio University Athens, OH.
Abstract We present multiwavelength imaging and broad-band spectroscopy of the relativistic jets in the two nearby radio galaxies 3C 371 and PKS ,
Multi - emission from large-scale jets Fabrizio Tavecchio INAF – Osservatorio Astronomico di Brera.
QUASAR-MICROQUASAR ANALOGY The scales of length and time are proportional to M BH R sh = 2GM BH /c 2 ;  T  M BH Unique system of equations: The maximum.
Modeling the SED and variability of 3C66A in Authors: Manasvita Joshi and Markus Böttcher (Ohio University) Abstract: An extensive multi-wavelength.
A Chandra Survey of Quasar Jets: Latest Results Jonathan Gelbord H.L. Marshall (MIT); D.A. Schwartz (SAO); D.M. Worrall & M. Birkinshaw (U. Bristol); J.E.J.
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Constraining the Location of Gamma-ray Emission in Blazar Jets Manasvita Joshi, Boston University Collaborators: Alan Marscher & Svetlana Jorstad (Boston.
C.C. Teddy Cheung NASA Goddard Space Flight Center and Eureka Scientific Inc.* Radio Galaxies in the Chandra Era 8 July 2008 *Chandra.
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
Insights on Jet Physics & High- Energy Emission Processes from Optical Polarimetry Eric S. Perlman Florida Institute of Technology Collaborators: C. A.
Radio Loud and Radio Quiet AGN
Gamma Rays from the Radio Galaxy M87
Observation of Pulsars and Plerions with MAGIC
Broadband Properties of Blazars
THE X-RAY PROPERTIES OF TYPICAL HIGH-REDSHIFT RADIO-LOUD QUASARS
Fermi Collaboration Meeting
Modelling of non-thermal radiation from pulsar wind nebulae
Multiwavelength Observations of the Quasar Jet in PKS
Presentation transcript:

The Quasar : A Laboratory for Particle Acceleration Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman Marshall MIT Dan Schwartz SAO Diana Worrall U. Bristol Mark Birkinshaw U. Bristol Eric Perlman FIT Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman Marshall MIT Dan Schwartz SAO Diana Worrall U. Bristol Mark Birkinshaw U. Bristol Eric Perlman FIT

Radio Observations with the VLA at 15 GHz B-Array, 2 hr at 5 GHz A-Array, 2 hr S 5GHz = 396 mJy/beam S 15GHz = 347 mJy/beam rms = 0.01 mJy/beam beam = 0.5'' x 0.5'', 0 5 GHz C5 15 GHz z=1.06, D = 7.1 Gpc S 5GHz = 104±15 mJy S 15GHz = 40±8 mJy  rad =0.83±0.03, S = -   C5 =1.2  R C5 =4.3kpc

Radio Observations with the VLBA at 15 GHz B-Array, 2 hr at 5 GHz A-Array, 2 hr  app ~5.7  core  GHz C5 J jet/cjet ≈ 8.7  cos  ≈ 0.4  =  1-  -2  - Lorentz factor Aars & Hough 2005

Spectral/Polarization Properties of the Jet

Magnetic Fileld Structure in the Jet

Infrared Observations with Spitzer Space Telescope IRAC with 5.4ks: 4.5  m & 8  m C5: S 4,5  m = 9.6±2.3  Jy S 8  m = 16.6±4.5  Jy  IR =0.96±0.11

X-Ray Observations with Chandra: ACIS-S3, 18 ks, keV C5 N H =1.19x10 20 cm -2 C5:  x =0.75±0.30 S 1keV =2.5±0.7 nJy

Prominent Feature C5 at 10'' from the Core blue contours keV color scale - 8  m pink contours - 5GHz 0.83± ± ±0.30

Table 1. Parameters of Jet Components for Comp. Counts X-ray position Radio position X-ray Size Radio Size Flux(0.2-6 keV) Radio Flux R" PA° R" PA° arcsec arcsec erg cm -2 s -1 mJy Core 6703± C1 7± C2 30± < 0.04 C3 25± < 0.04 C4 34± < 0.04 C5 18± C6 1± < Table 1. Parameters of Jet Components for Comp. Counts X-ray position Radio position X-ray Size Radio Size Flux(0.2-6 keV) Radio Flux R" PA° R" PA° arcsec arcsec erg cm -2 s -1 mJy Core 6703± C1 7± C2 30± < 0.04 C3 25± < 0.04 C4 34± < 0.04 C5 18± C6 1± < Compton Shop The one-zone steady-state model: A sphere of a given radius is moving with a given Lorentz factor through an external photon field with a black body spectrum. An electron distribution with a power law is continuously injected in the sphere. The electrons suffer synchrotron and inverse Compton losses and eventually escape from the source. The system reaches a steady state when the equation for energy conservation is satisfied: L inj = L loss + L esc The code calculates synchrotron, total inverse Compton from all sources of photons, i.e., SSC and EC emission Redshift, z Lorentz factor,  Doppler factor,  Exponent for power law of the electron distribution, p  min,  max - minimum, maximum Lorentz factor of the electron distribution Comoving luminosity, L inj, erg/s Magnetic field, B, G External photon field Radius of the sphere, R, cm Escape time, t esc, in units of R/c

Table 1. Parameters of Jet Components for Comp. Counts X-ray position Radio position X-ray Size Radio Size Flux(0.2-6 keV) Radio Flux R" PA° R" PA° arcsec arcsec erg cm -2 s -1 mJy Core 6703± C1 7± C2 30± < 0.04 C3 25± < 0.04 C4 34± < 0.04 C5 18± C6 1± < Table 1. Parameters of Jet Components for Comp. Counts X-ray position Radio position X-ray Size Radio Size Flux(0.2-6 keV) Radio Flux R" PA° R" PA° arcsec arcsec erg cm -2 s -1 mJy Core 6703± C1 7± C2 30± < 0.04 C3 25± < 0.04 C4 34± < 0.04 C5 18± C6 1± < Spectral Energy Distribution of C5 z=1.06  =1.2  =1.2 p=2  min =10  max =10 7 L inj = 2  erg/sec B = 15  G R = 1.3  cm t esc =5, CMB U B = 9.0  erg cm -3 U p = L inj /(4  R 2 u)= 1.6  erg cm -3 u=c/t esc,  =h /(mc 2 ) t ltcross =R/u=1.4  10 6 yr

Magnetic Field Structure in C5

Conclusions 1.The bright radio feature detected at 10  from the core has counter- parts at X-ray and IR wavelengths. 2. The SED of the feature suggests that the observed emission is produced via the synchrotron mechanism and EC/CMB process by a single population of relativistic electrons with Lorentz factors up to 10 7 and energy index ~3. 3. The jet in this region is mildly relativistic with Doppler factor  ~ 1.2 and magnetic field B ~ 15  G. 4. The jet most likely decelerates on kiloparsec scales by a factor of ~3 in  with respect to the parsec-scale jet flow. 5. The injection of particles of such high energies in the region seems to occur at an oblique shock front formed by the interaction of the jet with a cloud that is ramming it at an angle. 6. The particles stay in the region  1.4  10 6 yr and cool efficiently. 7. The EC/CMB process should produce  -ray emission that possibly can be detected with the GLAST.