The University of Tokyo Norio Narita

Slides:



Advertisements
Similar presentations
Ge/Ay133 What can transit observations tell us about (exo)-planetary science? Part II – “Spectroscopy” & Atmospheric Composition/Dynamics Kudos to Heather.
Advertisements

Exoplanet Atmospheres: Insights via the Hubble Space Telescope Nicolas Crouzet 1, Drake Deming 2, Peter R. McCullough 1 1 Space Telescope Science Institute.
Planet Characterization by Transit Observations Norio Narita National Astronomical Observatory of Japan.
Mapping the Realm of Hot Jupiters Bun’ei Sato, Shigeru Ida ( Titech ), Eri Toyota ( Kobe Univ. ), Masashi Omiya ( Tokai Univ. ), Debra Fischer ( SFSU ),
Stellar Spectroscopy during Exoplanet Transits Dissecting fine structure across stellar surfaces Dainis Dravins *, Hans-Günter Ludwig, Erik Dahlén, Hiva.
Tim Healy Tony Perry Planet Survey Mission. Introduction Finding Planets Pulsar Timing Astrometry Polarimetry Direct Imaging Transit Method Radial Velocity.
Exploring a Nearby Habitable World …. Orbiting an M-dwarf star Drake Deming NASA’s Goddard Space Flight Center.
SEARCHING FOR PLANETS IN THE HABITABLE ZONE. FROM COROT TO PLATO Ennio Poretti – INAF OAB.
PX437 EXOPLANETS Outline 1.Before Exoplanets 2.Detecting exoplanets 1.Direct imaging 2.Reflex Motion of Star 3.Transiting exoplanets 3.Planet Formation.
Somak Raychaudhury  Two-body problem  Binary stars  Visual  Eclipsing  Spectroscopic  How to find extrasolar planets.
Ge/Ay133 What can transit observations tell us about (exo)-planetary science?
Lecture 14: Searching for planets orbiting other stars III: Using Spectra 1.The Spectra of Stars and Planets 2.The Doppler Effect and its uses 3.Using.
Extrasolar Planets.I. 1.What do we know and how do we know it. 2.Basic planetary atmospheres 3.Successful observations and future plans.
Lecture 11: The Discovery of the World of Exoplanets
Astronomy News 2007/03/20 HEAG meeting Astronomers Puzzled by Spectra of Transiting Planet Orbiting Nearby Star.
Reflected Light From Extra Solar Planets Modeling light curves of planets with highly elliptical orbits Daniel Bayliss, Summer Student, RSAA, ANU Ulyana.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Spectroscopic Observations of HD b Lewis Kotredes Ge/Ay 132 Final.
Detecting molecules in the atmospheres of transit Exoplanets Giovanna Tinetti University College London Mao-Chang Liang Academia Sinica, Taiwan.
Lecture 16: Searching for Habitable Planets: Remote Sensing Methods and parameters we can measure Mean density measurements: internal structure Measurements.
Orbital motion, absolute mass & high-altitude winds of HD b Ignas Snellen, Remco de Kok, Ernst de Mooij, Simon Albrecht Nature – May 2010.
Norio Narita (NAOJ Fellow) Special Thanks to IRD Transit Team Members
What stellar properties can be learnt from planetary transits Adriana Válio Roque da Silva CRAAM/Mackenzie.
Nadiia Kostogryz & Svetlana Berdyugina
Lecture 34. Extrasolar Planets. reading: Chapter 9.
Adriana V. R. Silva CRAAM/Mackenzie COROT /11/2005.
SPICA Science for Transiting Planetary Systems Norio Narita Takuya Yamashita National Astronomical Observatory of Japan 12009/06/02 SPICA Science Workshop.
Extrasolar planets. Detection methods 1.Pulsar timing 2.Astrometric wobble 3.Radial velocities 4.Gravitational lensing 5.Transits 6.Dust disks 7.Direct.
Detection of H α Absorption in Exoplanetary Exospheres Seth Redfield Wesleyan University Adam Jensen (Wes) Mike Endl (UT) Bill Cochran (UT) Lars Koesterke.
How are planets around other stars (apart from the Sun) found? How do we determine the orbital parameters and masses of planets? Binary Systems and Stellar.
Search for planetary candidates within the OGLE stars Adriana V. R. Silva & Patrícia C. Cruz CRAAM/Mackenzie COROT /11/2005.
Young active star research with SONG and mini-SONG Huijuan Wang National Astronomical Observatories Chinese Academy of Charleston.
Subaru HDS Transmission Spectroscopy of the Transiting Extrasolar Planet HD b The University of Tokyo Norio Narita collaborators Yasushi Suto, Joshua.
1B11 Foundations of Astronomy Extrasolar Planets Liz Puchnarewicz
1 An emerging field: Molecules in Extrasolar Planets Jean Schneider - Paris Observatory ● Concepts and Methods ● First results ● Future perspectives.
Simultaneous Subaru/MAGNUM Observations of Extrasolar Planetary Transits Norio Narita (U. Tokyo, JSPS Fellow, Japan) Collaborators Y. Ohta, A. Taruya,
Searching for Brown Dwarf Companions to Nearby Stars Michael W. McElwain, James E. Larkin & Adam J. Burgasser (UC Los Angeles) Background on Brown Dwarfs.
Testing Planet Migration Theories by Observations of Transiting Exoplanetary Systems 1/39 University of Tokyo Norio Narita.
EXTRASOLAR PLANETS FROM DOME -C Jean-Philippe Beaulieu Institut d’Astrophysique de Paris Marc Swain JPL, Pasadena Detecting extrasolar planets Transit.
Data products of GuoShouJing telescope(LAMOST) pipeline and current problems LUO LAMOST Workshop.
Corot Week 9 ESTEC 5-9 Dec 2005 Frédéric Pont Geneva Observatory Lessons from the OGLE planetary transit survey Francois Bouchy (Marseille/OHP), Nuno Santos.
A Dedicated Search for Transiting Extrasolar Planets using a Doppler Survey and Photometric Follow-up A Proposal for NASA's Research Opportunities in Space.
SOCHIAS Santiago, January Sergio Hoyer Miranda Departamento de Astronomía Universidad de Chile 1.
Lecture 14: The Discovery of the World of Exoplanets Indirect methods for planet detection The Astrometric method The Doppler shift method The Transit.
Extrasolar Planets The Search For Ever since humans first gazed into the night sky, the question of whether we are alone in the universe has remained unanswered.
23 November 2015what do we know from the exo-planets? Florian Rodler What do we know about the exo-planets? & How to detect direct signals from exo-planets?
Transit Spectroscopy with HST/WFC3 January 18, 2012 Exoplanet Transit Spectroscopy with HST/WFC3: Probing H 2 O with New Precision Avi M. Mandell NASA.
Extrasolar planets. Detection methods 1.Pulsar Timing Pulsars are rapidly rotating neutron stars, with extremely regular periods Anomalies in these periods.
Measuring Magnetic fields in Ultracool stars & Brown dwarfs Dong-hyun Lee.
Spectroscopic Transits
Spin-Orbit Alignment Angles and Planetary Migration of Jovian Exoplanets Norio Narita National Astronomical Observatory of Japan.
Discovery and Observation Including Techniques Jennifer Bergman Korbie Dannenberg Travis Patrick.
Spectroscopy of extrasolar planets atmosphere
Looking for trees in the forest LION, BM Seminar 5 June 2008 Ruth Buning (LCVU, Amsterdam) Wim Ubachs (LCVU, Amsterdam) Michael Murphy (Swinburne University,
Extrasolar Planets & The Power of the Dark Side David Charbonneau California Institute of Technology Fermilab – 24 April 2002.
Characterization and selection of extrasolar planetary transit candidates Jose A. Gallardo N. P. Universidad Catolica de Chile, Santiago, Chile. Ecole.
Transiting Exoplanet Search and Characterization with Subaru's New Infrared Doppler Instrument (IRD) Norio Narita (NAOJ) On behalf of IRD Transit Group.
The Critical Importance of Data Reduction Calibrations In the Interpretability of S-type Asteroid Spectra Michael J. Gaffey Space Studies Department University.
Companion Candidates around Transiting Planetary Systems: SEEDS First/Second Year Results Norio Narita (NAOJ) Yasuhiro H. Takahashi (Univ. of Tokyo) and.
Observing the Atmospheres of Transiting Exoplanets
Measuring the Spin-Orbit Alignments of Transiting Exoplanetary Systems: The Case for TrES-1 Norio Narita, Keigo Enya, Bun'ei Sato, Yasuhiro Ohta, Joshua.
IAU253 Transiting Planets: May
1 / 12 Simultaneous Spectroscopic & Photometric Observations of a Transit of TrES-1b Norio Narita (UT, JSPS Fellow) Collaborators K. Enya (JAXA), B. Sato.
Past and Future Studies of Transiting Extrasolar Planets
Dynamical Mass Ratios of the Youngest Low-Mass Stars
SPICA for Transiting Exoplanets: Which SPICA instruments are useful?
The University of Tokyo Norio Narita
Subaru HDS Ground-based Transmission Spectroscopy
Presentation transcript:

The University of Tokyo Norio Narita Subaru HDS Transmission Spectroscopy of the Transiting Extrasolar Planet HD 209458b The University of Tokyo Norio Narita collaborators Yasushi Suto, Josh Winn, Ed Turner, Wako Aoki, Chris Leigh, Bun’ei Sato, Motohide Tamura, Toru Yamada

Contents Introduction Subaru Observations Data Reduction and Results Extrasolar Planets Transmission Spectroscopy Past Researches Subaru Observations Data Reduction and Results Correction of Instrumental Profiles Calculation of Difference Light Curves Resultant Upper limits Conclusions and Implications

Extrasolar Planetary Science Extrasolar Planets are planets orbiting around main sequence stars other than the Sun. The first extrasolar planet, 51 Peg. b, was discovered by Michel Mayor et al. in 1995.

Motivation for Researches So far 137 exoplanetary systems have been identified. We already know that extrasolar planets do exist in the universe, but we do not have enough observational information. What are there in extrasolar planets?

Transmission Spectroscopy A method to search for atmospheric components of extrasolar planets. provided by Chris Leigh At least in principle, one can detect atmospheric components as excess absorption in the in-transit spectra.

Our Target HD 209458 Basic data It is the first extrasolar planetary system in which planetary transits by the companion have been found. Basic data HD209458 G0V (Sun-like star) V = 7.64 HD209458b Orbital Period 3.524738 ± 0.000015 days inclination 86.1 ± 0.1 deg Mass 0.69 ± 0.05 MJ Radius 1.43 ± 0.04 RJ from Extra-solar Planet Catalog by Jean Schneider

Past Researches From Hubble Space Telescope 2002 An excess absorption of 0.02% in Na D lines was reported. 2003 A strong additional Ly alpha absorption of 15% was found. 2004 Oxygen and Carbon were detected as well. Charbonneau et al. 2002 Vidal-Madjar et al. 2003 Vidal-Madjar et al. 2004 From ground-based telescopes For the cores of atomic absorption lines (0.3Å) Bundy & Marcy (2000) Keck I /HIRES < 3 % Moutou et al. (2001) VLT /UVES ~ 1 %

Subaru Observations One night observation covering an entire planetary transit was conducted in Oct. 2002. Orbital Period 3.5 days We obtained total 30 spectra: in 12 out 12 half 6 Observing Parameters Wavelength 4100~6800Å Spectral Resolution 45000 SNR / pix ~ 350 Exposure time ~ 500 The phase of observations

Create a template spectrum from all of the raw spectra. Data Reduction Scheme Create a template spectrum from all of the raw spectra. Calibrate the template spectrum in total flux and wavelength shift matched to each spectrum. Calculate residual spectrum and integrate the residual at specific atomic lines.

Comparison of Two Spectra Red and Blue : two spectra taken 2.5 hours apart Green : ratio spectra (Blue / Red) 10%

Correction Method In order to correct the instrumental profiles, we have established an empirical correction method. S1 and S2 denote each spectrum, while R = S1/S2, then (flux calibration) (wavelength calibration)

Correction Result We could limit instrumental variations almost within the Poisson noise.

Difference Spectra We integrate residual over this region. time template telluric

Difference Light Curves For example: a difference light curve of Hα line. There is no transit-related excess absorption (blue region).

Comparison with previous results (Bundy and Marcy 2000) Upper Limits Comparison with previous results (Bundy and Marcy 2000) Our upper limits are the most stringent so far from ground-based optical observations.

Conclusion and Implication We performed the first transmission spectroscopy of transiting extrasolar planet using Subaru HDS. However, we could not detect any transit-related signature. Our results may imply a limit of photometric accuracy from ground-based observations. Next we intend to investigate spectroscopic changes caused by planetary transits (i.e. the Rossiter effect).

Future Work

Implications of our Results

The Rossiter-McLaughlin Effect

Motivation for Researches So far 136 exoplanetary systems have been identified. We already know that extrasolar planets do exist in the universe, but we do not have enough observational information. What are there in extrasolar planets? Transmission spectroscopy of transiting extrasolar planets is one of the best clues to study nature of extrasolar planets.