Introduction to MOS Transistors Section 6.1-6.4. Outline Similarity Between BJT & MOS Introductory Device Physics Small Signal Model.

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

Metal Oxide Semiconductor Field Effect Transistors
CMOS Transistors. Outline Qualitative Description of CMOS Transistor g m /I D Design Biasing a transistor Using g m /I D Approach Design Using Cadence.
Chapter 6 The Field Effect Transistor
MOSFETs Monday 19 th September. MOSFETs Monday 19 th September In this presentation we will look at the following: State the main differences between.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
Introduction to CMOS VLSI Design Lecture 5 CMOS Transistor Theory
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Lecture 11: MOS Transistor
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture #16 OUTLINE Diode analysis and applications continued
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory
The metal-oxide field-effect transistor (MOSFET)
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
EE105 Fall 2007Lecture 16, Slide 1Prof. Liu, UC Berkeley Lecture 16 OUTLINE MOS capacitor (cont’d) – Effect of channel-to-body bias – Small-signal capacitance.
Lecture 0: Introduction. CMOS VLSI Design 4th Ed. 0: Introduction2 Introduction  Integrated circuits: many transistors on one chip.  Very Large Scale.
MOS Capacitors ECE Some Classes of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor ▫ MOSFET, which will be the type that.
Semiconductor Devices III Physics 355. Transistors in CPUs Moore’s Law (1965): the number of components in an integrated circuit will double every year;
Transistors Three-terminal devices with three doped silicon regions and two P-N junctions versus a diode with two doped regions and one P-N junction Two.
Lecture 2 Chapter 2 MOS Transistors. Voltage along the channel V(y) = the voltage at a distance y along the channel V(y) is constrained by the following.
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
Qualitative Discussion of MOS Transistors. Big Picture ES220 (Electric Circuits) – R, L, C, transformer, op-amp ES230 (Electronics I) – Diodes – BJT –
ECE 342 Electronic Circuits 2. MOS Transistors
Norhayati Soin 06 KEEE 4426 WEEK 7/1 6/02/2006 CHAPTER 2 WEEK 7 CHAPTER 2 MOSFETS I-V CHARACTERISTICS CHAPTER 2.
Chapter 5: Field Effect Transistor
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
© Digital Integrated Circuits 2nd Devices Device Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated Circuits: A.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Qualitative Discussion of MOS Transistors. Big Picture ES230 – Diodes – BJT – Op-Amps ES330 – Applications of Op-Amps – CMOS Analog applications Digital.
DMT121 – ELECTRONIC DEVICES
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
NOTES 27 March 2013 Chapter 10 MOSFETS CONTINUED.
NMOS PMOS. K-Map of NAND gate CMOS Realization of NAND gate.
Norhayati Soin 06 KEEE 4426 WEEK 3/1 9/01/2006 KEEE 4426 VLSI WEEK 3 CHAPTER 1 MOS Capacitors (PART 1) CHAPTER 1.
1 Chapter 5. Metal Oxide Silicon Field-Effect Transistors (MOSFETs)
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
Structure and Operation of MOS Transistor
ISAT 436 Micro-/Nanofabrication and Applications Transistors David J. Lawrence Spring 2004.
Introduction to MOS Transistors Section Selected Figures in Chapter 15.
MOSFET Placing an insulating layer between the gate and the channel allows for a wider range of control (gate) voltages and further decreases the gate.
Terminal Impedances Eq Eq Eq
CMOS VLSI Design CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
Full-Wave (Bridge) Rectifier
EE210 Digital Electronics Class Lecture 6 May 08, 2008.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
Introduction to CMOS Transistor and Transistor Fundamental
Integrated Circuit Devices
Metal-oxide-semiconductor field-effect transistors (MOSFETs) allow high density and low power dissipation. To reduce system cost and increase portability,
Field Effect Transistor (FET)
CP 208 Digital Electronics Class Lecture 6 March 4, 2009.
Transistors (MOSFETs)
Introduction to CMOS VLSI Design CMOS Transistor Theory
MOSFET V-I Characteristics Vijaylakshmi.B Lecturer, Dept of Instrumentation Tech Basaveswar Engg. College Bagalkot, Karnataka IUCEE-VLSI Design, Infosys,
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
Introduction to MOS Transistors
Chapter 6 The Field Effect Transistor
MOS Field-Effect Transistors (MOSFETs)
DMT 241 – Introduction to IC Layout
Dr John Fletcher Rm 131 Power Electronics Dr John Fletcher Rm 131.
منبع: & کتابMICROELECTRONIC CIRCUITS 5/e Sedra/Smith
Qualitative Discussion of MOS Transistors
FIELD EFFECT TRANSISTOR
Lecture #15 OUTLINE Diode analysis and applications continued
Presentation transcript:

Introduction to MOS Transistors Section

Outline Similarity Between BJT & MOS Introductory Device Physics Small Signal Model

BJT & MOS Transistor [Chapter 4,5] [Chapter 6,7]

Analogous Devices Terminals – “C”↔”D” – “E” ↔”S” – “B” ↔”G” Analogous Devices – NPN ↔NMOS – PNP ↔PMOS

Similarity in the Small Signal Equivalent Circuit

Terminal Resistance

NPN to NMOS

Introductory Device Physics

A Crude Metal Oxide Semiconductor (MOS) Device P-Type Silicon is slightly conductive. Positive charge attract negative charges to the interface between insulator and silicon. A conductive path is created If the density of electrons is sufficiently high. Q=CV. V2 causes movement of negative charges, thus current. V1 can control the resistivity of the channel. The gate draws no current!

NMOS in 3D n+ diffusion allows electrons move through silicon. (provide electrons)(drain electrons) W

Typical Dimensions of MOSFETs These diode must be reversed biased. tox is made really thin to increase C, therefore, create a strong control of Q by V.

A Closer Look at the Channel Formulation Need to tie substrate to GND to avoid current through PN diode. Positive charges repel the holes creating a depletion region, a region free of holes. Free electrons appear at V G =V TH. V TH =300mV to 500 mV (OFF)(ON)

Change Drain Voltage Resistance is determined by V G.

Change Gate Voltage A higher V G leads to a lower channel resistance, therefore a larger slope.

Length Dependence The resistance of a conductor is proportional to the length. fixed V D fixed V G

Dependence on Oxide Thickness Q=CV C is inversely proportional to 1/t ox. Lower Q implies higher channel resistance. fixed V D fixed V G

Width Dependence The resistance of a conductor is inversely proportional to the cross section area. A larger device also has a larger capacitance!

Channel Pinch Off Q=CV – V=VG-V OXIDE-Silicon V OXIDE-Silicon can change along the channel! Low V OXIDE-Silicon implies less Q.

VG-VD is sufficiently large to produce a channel VG-VD is NOT sufficiently large to produce a channel No channel Electrons are swept by E to drain. Drain can no longer affect the drain current!

Regions No channel (No Dependence on VDS) Assumption: