PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,

Slides:



Advertisements
Similar presentations
I 2 fs REMPI 1) Energetics / excitation calculations....slide 2 2) Absorption spectrum slides 3-6 3)REMPI spectrum slide.
Advertisements

CH3Br, Energy for CH3Br ->->-> CH3 + Br
Agust,www,....january09/PPT aka.ppt Agust,heima,... january09/XLS ak.xls About enhanced I( 35 Cl + )/I(H 35 Cl + ) values in a) g 3  + (1),v´=0.
Group IV presentation: Frímann, Helgi, Long & Nanna.
Silver Nyambo Department of Chemistry, Marquette University, Wisconsin Resonance enhanced two-photon ionization (R2PI) spectroscopy of halo-aromatic clusters.
MALDI-TOF:
INVESTIGATION OF O 2 (C 3 , v=2) BY NOVEL LASER PHOTOIONIZATION TECHNIQUE IN AIR AT ATMOSPHERIC PRESSURE Jonathan D. Umbel, Dr. Steven F. Adams, Dr. Charles.
Ar Cl Ar Cl... Ar Cl Ar + - Cl Ar Stilben e(1)
Pnt I rel AK: ; agust,heima/rannsóknir/REMPI/HF/fra Wang/HF test skimmer pxp & HF t skimmer ppt Fig. 1.
CH2Br2 agust,www,....ch2br2/PPT ak.ppt agust,heima,....CH2Br2/Long, Sept-11/Merged CH2Br2 spectra jlak.pxp agust,heima,....CH2Br2/Long, Sept-11/Merged.
II. Multi- photon excitation / ionization processes
HBr, F 1  2, v´=1
CH3Br, HBr detection agust, www,...Sept09/PPT ak.ppt.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
CH 3 Br: & Literature survey on Direct ion-pair state excitation vs Ion pair fomation via initial Rydberg state excitation (Rydberg doorway.
Voltage divider HV - 2Kv supply HX Nozzle Turbo Pump TOF Tube Focus lens MCP Detector Oscilloscope Computer EXT Excimer Laser One Shot Cycle Input Output.
HCl H+ signal near agust,heima,...januar09/V8_f3d2(alignment) vhw.pxp.
CH3Br, )PD summary status 2)Thresholds for direct excitations 3)CH3+ formation energetics / thresholds (direct and indirect)/ PD agust, heima,.....Dec09/CH3Br-Overall.
Things to address in our CH 3 Br studies / publication(s) Main reference is T. Ridley et al., JPC A, 112, 7170, (2008):
New states and peaks we found 29/06/2011 JLong. StateV’  I(Br + )/I(HBr + ) Linewidth (cm -1 ) Lifetime (ps) f33f3 % f32f32.
Agust,heima,...january09/PPT ak.ppt cm cm-1 F, v´= cm-1 Agust,heima,..january09/PXP ak.pxp.
- acid formation(?). = HCl Water / H 2 O = i.e.: H 3 O Cl - (aq) HCl + H 2 O(l)
Off-resonance interaction between E and V state of HCl and HBr Jingming Long 22/09/2011.
CH3Br agust,www,...Sept09/PPt ak.ppt agust,heima,....Sept09/CH3BR avhwak.pxp agust,heima,....Sept09/CH3BR bvhwak.pxp.
H35Cl, j(0+) intensity ratio analysis and comparison of experimental data agust,www,....Jan11/PPT ak.ppt agust,heima,...Jan11/Evaluation of coupling.
PhD project overview - REMPI analyses of small, iodine containing molecules Helgi Rafn Hróðmarsson.
MwpntspeciesMwcalc 191H+1, C+11, CH+13, CH2+13, CH3+15, C2+24, C2H+24, C2H2+25,94874.
RECENT STUDIES OF OXYGEN- IODINE LASER KINETICS Azyazov V.N. and Pichugin S.Yu. P.N. Lebedev Physical Institute,Samara Branch, Russia Heaven M.C. Emory.
Controlling Matter with Light Robert J. Gordon University of Illinois at Chicago DUV-FEL Seminar January 6, 2004 NSF, DOE, PRF, UIC/CRB, Motorola.
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
Silver Nyambo Department of Chemistry, Marquette University, Wisconsin Reactive pathways in the chlorobenzene-ammonia dimer cation radical: New insights.
Wbt1 Chapter 10. REMPI, ZEKE, and MATI Spectroscopies Resonance-enhanced multiphoton ionization (REMPI) spectroscopy involves more than one photons in.
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG,
The study of two previous papers in REMPI sepectra Jingming Long
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
VMI images –fitting Helgi Rafn Hróðmarsson. The purpose of this fitting procedure is to check whether the assumption that the angular distribution data.
Chan Ho Kwon, Hong Lae Kim, and Myung Soo Kim* National Creative Research Initiative Center for Control of Reaction Dynamics and School of Chemistry, Seoul.
Studies of Molecular Photoruptures by using 2 Dimension (2+1) and (3+1) REMPI-TOF Jingming Long 15/09/2010.
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN the Dissociation Limit. Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN Above the Dissociation.
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
HBr Energetics agust,www,....hbr/PPT ak.ppt agust, heima,...HBr/XLS ak.xls.
HBr, angular distribution analysis E(0) Updated,
Imaging studies of S + fragments from the UV photolysis of state selected H 2 S + cations A.D. Webb, R.N. Dixon and M.N.R. Ashfold School of Chemistry,
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
Chong Tao, Calvin Mukarakate, Scott A. Reid Marquette University Richard H. Judge University of Wisconsin-Parkside 63 rd International Symposium on Molecular.
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3I VMI-REMPI data and analysis:
Characterization of CHBrCl2 photolysis by velocity map imaging
Updated (p:15-16, refs. & p:50-51)
DCl (HCl) Heavy Rydberg states work Exploring V state spectra
Frauke Schroeder and Edward R. Grant Department of Chemistry
2 color VMI exp. CH3(X;v1v2v3v4) detection; hi
VMI-fitting results for V(m+i), i=4-10
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
HBr Mass resolved REMPI and Imaging REMPI.
CH3I VMI-REMPI data and analysis:
HBr The cm-1 system (slides 2-16)
CF3Br agust,www,....cf3br/PPT ak.ppt agust,heima,....Sept10/XLS ak.xls
Perturbation analysis in REMPI Spectra of HCl and HBr
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík, Iceland. Oral presentation at PSI / SLS, June, 2012.

Voltage devider HV - 2Kv RX nozzle Turbo Pump TOF lense MCP detector oscilloscope computer Excimer Laser In out Dye- Laser SHG Time delay  S laser control Pellin Broca prism SHG control In out

REMPI = Resonance Enhanced MultiPhoton Ionization 1xh 2xh 2 E AB AB + + e AB** (2 + 1) REMPI

REMPI = Resonance Enhanced MultiPhoton Ionization 1xh 2xh 2 E AB AB + + e AB** A + B + + e

REMPI = Resonance Enhanced MultiPhoton Ionization 1xh 2xh 2 E AB AB + + e AB** A + B + + e AB # # AB + + e A + + B + e A + B + + e

A + B/B* REMPI = Resonance Enhanced MultiPhoton Ionization 1xh 2xh 2 E AB AB + + e AB** A + B + + e AB # # AB + + e A + + B + e A + B + + e A + + e B + + e

(2 + n)REMPI; n = 1,2, A B AB / Mw I(M + ) Laser excitation / cm -1 2D - REMPI PHOTOFRAGMENTATIONS, STATE INTERACTIONS ENERGETICS

I. Small molecules: Diatomic molecules Linear molecules II. “Bigger molecules” Polyatomic molecules Data:Rotational (J) structure resolution Data: Vibrational (v) structure resolution Analysis (J-dependent): Signal Intensities Power dependences Line-shifts Line-widths Analysis (v-dependent): Signal intensities Power dependences Results (J-dependent): Energetics n,(2+n) State interactions Photofragmention Lifetimes Results (v-dependent): Energetics n,(2+n) State interactions Photofragmention

Intensity Mw H+H+ 35 Cl + H 35 Cl + H 37 Cl + 12 C + Two photon resonance excitation= cm -1 Mass spectrum RCl = HCl

Mw / rel. 35 Cl + H 35 Cl + H 37 Cl + 2xhv Mw 35 Cl + 37 Cl + H 37 Cl + H 35 Cl + /cm -1

r(H-X) Energy HX H X ** H + --X - HX + H + X + e-e- e-e- + HX REMPI: IE limit v´ J´ v´ J´

270 cm -1

V 1  + (v´=m+10)

H 35 Cl + 35 Cl + Q J´=J´´ = HCl, F 1  2 2h  / cm -1 Intensity

r(H-X) Energy HX H X ** H + --X - HX + / HX + H + X + e-e- e-e- + HX REMPI: IE limit v´ J´ v´ J´

State Interactions ? (1) /  0 (2) /  0 12  c 1  0 1  a  c 2  0 2 = +  b =  c 1 ´  0  c 2 ´   c 1  c = 1 E

W 12 : Interaction strength (1) /  0 (2) /  0 12  c 1  0 1  a  c 2  0 2 = +  b =  c 1 ´  0  c 2 ´   c 1  c = 1 E

(1) /  0 (2) /  0 12  c 1  0 1  a  c 2  0 2 = +  b =  c 1 ´  0  c 2 ´   c 1  c = 1 E( ) E( J´ ) EE E

H 35 Cl + 35 Cl + Q J´=J´´ = HCl, F 1  2 2h  / cm -1 Intensity

x  E J´=8 = 11.3 cm -1 HCl: F 1  2 V 1   c 1 2  c 2 2 X ?

H 35 Cl + 35 Cl + Q J´=J´´ = HCl, F 1  2 2h  / cm -1 Com- press- ion E x p a n s i o n Intensity



x  E J´=8 = 11.3 cm -1 HCl: F 1  2 V 1   c 1 2  c 2 = X? 6 cm -1 from line shifts

r(H-X) Energy HX H X ** H + --X - HX + / HX + H + X + e-e- e-e- + HX REMPI: IE limit v´ J´ v´ J´ c1c1 2 c2c2 2 ? X +

r(H-X) Energy HX H X ** H + --X - HX + / HX + H + X + e-e- e-e- + HX REMPI: v´ J´ v´ J´ H + X X+X+

r(H-X) Energy HX H X ** H + --X - HX + / HX + H + X + e-e- e-e- + HX REMPI: v´ J´ v´ J´ HX*** H + X* X+X+

r(H-X) E HX H + --X - HX + / HX + H + X + e-e- HX REMPI: v´ J´ v´ J´ c1c1 2 c2c2 2 X+X+ X X* c1c1 c2c I (HX + ) = c1c1 c2c I (X + ) = Ry:I.P./V: c2c2 2 c2c2 2 == X+)/X+)X+)/X+)  =    X + ) /    X + )  = X+)/X+)X+)/X+)

r(H-X) E HX H + --X - HX + / HX + H + X + e-e- HX REMPI: v´ J´ v´ J´ c1c1 2 c2c2 2 X+X+ X X* c2c2 2 c2c2 2   = X+)/X+)X+)/X+)   = X+)/X+)X+)/X+)

Exp.Q i=35i=37 I( i Cl + )/I(H i Cl + ) Exp.Q Calc. V,v´ = 20 Calc. V,v´=20 j 3  - 1 ; ´=0 isotopomersH 35 ClH 37 Cl J´ closest resonances(J´ res )22 |  E(J´ res ) | / cm W 12 (J´ res ) / cm c 1 2 (c 2 2 ) (J´ res )0.89(0.11)0.81(0.19)   14 x x H i Cl j 3  - 1 > > <   K. Matthíasson et al. J. Chem. Physics, 134, , (2011)

r(H-X) Energy HX HX** H + --X - HX + / HX + H + X + e-e- HX REMPI: v´ J´ v´ J´ H + X X+X+ j 3  - 1 t 3  + 1 S/O

H 35 Cl f 3  2 f 3  1 I( 35 Cl + )/I(H 35 Cl + ) States f32f32 f31f31 J´ closest resonances(J´ res )56 |  E(J´ res ) | / cm W 12 max (J´ res )/ cm c 1 2 (J´ res )  00 1.0 x < > Exp.Q Calc. V,v´=9 Exp.S Calc. V,v´=8 <

H 35 Cl f 3  2 f 3  1 I( 35 Cl + )/I(H 35 Cl + ) Exp.Q Calc. V,v´=9 Exp.S Calc. V,v´=8  No dissociation No predissociation pathway Dissociation: Predissociation by S/O couplings via “Gateway Rydberg states ( 1 , 3  )” :

H 37 Cl j 3  - (0 + ) Exp. Q

J´=0 J´=6 J´=6 v´=21 J´=6 v´=20 J´=0 : : j 3  - (0 + ), v´=0 V 1  (0 + ) H 37 Cl Near resonance  S  ´=0 E/cm -1

Calc. V,v´=20 V,v´=21 H 37 Cl j 3  - (0 + ) Exp. Q V´ statesv´=20v´=21 J´ closest resonances(J´ res )6 |  E(J´ res ) | / cm W 12 (J´ res ) / cm c 1 2 (J´ res )0.82  4.0(52 x )

H 79 Br

J´=0 J´=6 J´=9 J´=6 v´=m+5 H 79 Br E 1  (0 + ), v´=0 J´=9 v´=m+4 J´=0 V 1  (0 + ) Off resonance S S  ´=0 J´=6 J´=0 E/cm -1

H 79 Br, E(v´=0) I( 79 Br + )/I(H 79 Br + ) Linewidth/ cm -1

G(C 1  1 ) (JL) (SO) JL R(t 3  + 1 )R(A 1 , a 3  ) R(t 3  + 1 ) G(C 1  1 ) R(A 1 , a 3  ) V 1  + (m+7) E 1  + (1) F 1   (1) Energy (SO) (JL) (SO) HBr Á. Kvaran et al., J. Chem. Physics, 136, ,(2012)

* - H+H+ X-X- XH HX** { }.. HXHX : : : : : : : “Summary”: Photodissociation, State interactions, Energetics...

: Victor Huasheng Wang Kristján Matthíasson Jingming Long Helgi Rafn Hróðmarsson Coworkers: *... HBr,HI.....HCl, HBr HCl,......RX..

: Kári Sveinbjörnsson Hafdís Inga Ingvarsdóttir Eiríkur Þórir Baldursson Andras Bodi Coworkers: * CH 3 I CF 3 Br Ab initio CH 2 Br 2