Presentation is loading. Please wait.

Presentation is loading. Please wait.

Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.

Similar presentations


Presentation on theme: "Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu."— Presentation transcript:

1 Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu

2 Motivation:

3 Controlled preparation of high-v states of H 2 Test of QED in molecules Test the advanced ab initio calculations of Pachucki & coworkers Breakthrough in molecular theory (Relativistic effects and QED)

4 Motivation: Energy contribution of H 2 ground state + E rel + E QED E = E BO + E ad + E nad nonrelativistic -0.728 cm -1 J. Komasa,K. Pachucki, et. al. J. Chem. Theory Comput. 7 (2011) 3105.

5 + E rel + E QED E = E BO + E ad + E nad nonrelativistic -0.728 cm -1 Motivation: variation by the vibrational quantum number v J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.

6 Test of QED = Test of the Standard Model Electromagnetic (QED): D 0 ~ 4.5 eV Weak < 10 -12 eV Strong < 10 -400 eV Gravity ~ 10 -37 eV

7 Background J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), 6113-6119

8 Background J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), 6113-6119

9 H 2 +S( 1 S) H2SH2S 2-photon photolysis of H 2 S

10 J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), 6113-6119 H 2 +S( 1 S) H2SH2S H2H2 2-photon photolysis of H 2 S

11 Excitation scheme; multiple photons J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), 6113-6119

12 Present work : H 2 (high-v) from H 2 S molecule J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), 6113-6119 H2SH2S H 2 (X, v=10-14), S( 1 D) H 2 (EF, v=2-5)

13 Present work : H 2 (high-v) from H 2 S molecule J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), 6113-6119 H2SH2S H 2 (X, v=10-14), S( 1 D) H 2 (EF, v=2-5) Production laser Probe laser Ionization laser

14 Present work: Setup

15 Present work: Energy scheme

16 206nm

17 Preliminary results Overview scan

18  High-resolution spectrum of H 2 ground state high vibrational quantum number Overview scan X(v=12)-F(v=3) Q1 transition Preliminary results

19 H + signal width/MH z Groun dExcitedA(J)Theorydiff 68582.087375411(3)F2(3)Q(3)68582.098-0.011 68259.287234411(5)F2(5)Q(5)68259.321-0.034 68490.737136410(6)F1(6)Q(6)68490.755-0.019 68476.040339912(0)F3(0)Q(0)68476.054-0.014 68446.270303012(1)F3(1)Q(1)68446.288-0.018 68387.658305612(2)F3(2)Q(2)68387.666-0.008 68302.019352612(3)F3(3)Q(3)68302.028-0.009 68505.510750012(1)F3(3)S(1)68505.513-0.003 68699.793124311(4)E1(4)Q(4)68700.929-1.136 68713.986282613(2)E2(4)S(2)68716.817-2.831 68451.180125610(10)E0(10)Q(10)68451.539-0.360 68517.165383413(4)E2(4)Q(4)68516.3340.830 68411.626255311(5)F2(7)S(5)68411.0450.582 Preliminary results: summary

20 H + signal width/MH z Groun dExcitedA(J)Theorydiff 68582.087375411(3)F2(3)Q(3)68582.098-0.011 68259.287234411(5)F2(5)Q(5)68259.321-0.034 68490.737136410(6)F1(6)Q(6)68490.755-0.019 68476.040339912(0)F3(0)Q(0)68476.054-0.014 68446.270303012(1)F3(1)Q(1)68446.288-0.018 68387.658305612(2)F3(2)Q(2)68387.666-0.008 68302.019352612(3)F3(3)Q(3)68302.028-0.009 68505.510750012(1)F3(3)S(1)68505.513-0.003 68699.793124311(4)E1(4)Q(4)68700.929-1.136 68713.986282613(2)E2(4)S(2)68716.817-2.831 68451.180125610(10)E0(10)Q(10)68451.539-0.360 68517.165383413(4)E2(4)Q(4)68516.3340.830 68411.626255311(5)F2(7)S(5)68411.0450.582 Preliminary results: summary

21 D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), 827-846. J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105. Preliminary results: X(v=12) - F(v=3)

22 D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), 827-846. J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105. Expected accuracy: 0.002 cm -1 Theory: 0.0045 cm -1 Preliminary results: X(v=12) - F(v=3)

23 Conclusions and outlook Comfirm the previous work and reassign the transitions High resolution spectroscopy of high vibrational state of H 2 by photodissociation H 2 S molecule Test of QED theory of ground state vibrational level energies to v=12 Improve the S/N ratio Assign the unknown transitions Extend to the highest vibrational state (v=14)

24 Is H 2 O has the same phenomenon?

25 Wim Ubachs Edcel Salumbides

26 Preliminary results: Imaging molecular beam linearly polarized laser E field

27 Preliminary results: Imaging molecular beam linearly polarized laser E field

28 H 2 dissociation energy Experiment: Liu et al., J. Chem. Phys. 130, 174306 (2009) Calculation: Piszczatowski et al., J. Chem. Theory Comput. 5, 3039 (2009)

29 + E rel + E QED E = E BO + E ad + E nad nonrelativistic -0.728 cm -1 J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105. Motivation: variation by the vibrational quantum number v

30 Motivation: QED theory Test of Quantum electrodynamics (QED) theory in Bond state. J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.

31 QED: most accurate theory Free-particle QED electron anomalous magnetic moment : PRL 100, 120801 (2008) electron anomalous magnetic moment : PRL 100, 120801 (2008) exp-theory : 7.7 x 10 -10 (  from PRL 106, 080801 (2011) ) exp-theory : 7.7 x 10 -10 (  from PRL 106, 080801 (2011) ) Bound state QED Hydrogen atom; Hydrogen-like Uranium ion (U 91+ ) Helium atom: Kandula, PRL 10, 063001 (2010); van Rooij, Science 333, 196 (2011) HD + molecular ion: J. Koelemeij poster Hydrogen molecule: this talk QED calculations: Corrections scale to ( Z  ) → power series expansion in (  ) n or 1/( Z  ) n with proton number Z and fine structure constant 

32 Background

33

34

35 Results: high-J states in X 1  g +, v=0 of H 2 molecule J max (v=0) = 8 T equiv = 12,000 K E.J. Salumbides, et. al. Phys. Rev. Lett. 107, 043005 (2011) Uncertainty estimate (MHz) Line fitting 5 Residual Doppler <1 I 2 calibration 5 etalon nonlinearity 5 ac-Stark shift 50 dc-Stark shift 10 PDA chirp 150 Statistical 30 Total 160 or 0.005 cm -1 or 0.005 cm -1 or relative uncertainty 5 x 10 -8

36 Results: low-v in X 1  g + state of Hydrogen molecule Uncertainty estimate (MHz) Ac-Stark < 0. 4 Dc-Stark < 0. 1 Frequency chirp 2.0 Frequency calibration 0.1 Residual 1st-order Doppler H2 0.5 HD 0.3 HD 0.3 D2 0.3 D2 0.3 2nd-order Doppler < 0. 1 Pressure shift < 0. 1 Statistics H2 1.5 HD 1.6 HD 1.6 D2 1.9 D2 1.9 Total Uncertainty H2 2.6 Total Uncertainty H2 2.6 HD 2.6 HD 2.6 D2 2.8 D2 2.8 M. Niu, et. al. J. Mol. Spectr. 300, 44-54 (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, 193601 (2013)

37 Preliminary results D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), 827-846. J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.  Determine energies of X highly vibrational quantum states

38 Some results: Two color scan

39 Some results: X12-F3 Q2

40 Some results: X11-F2 Q3

41 X12-F3 Q1

42

43

44 Some results: Image

45

46 Experiment: Chirp Acousto-optic modulator(AOM) Fiber link and coupler Voltage controlled oscillator High power amplifier

47 Experiment: Matlab program for chirp 47 M. S. Fee, et. al. Physical Review A 1992, 45 (7), 4911-4924. K. S. E. Eikema, et. al. Physical Review A 1997, 55 (3), 1866-1884.

48 Motivation: variation by the rotational quantum number J + E rel + E QED E = E BO + E ad + E nad nonrelativistic -0.728 cm -1 J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.

49 Fifth-force search Yukawa potential (Phenomenological) Hideki Yukawa Extra hadron-hadron interaction strength: range: Insert in molecular wave function

50 How do we measure?

51 Results: high-J states in X 1  g +, v=0 of H 2 molecule J max (v=0) = 8 T equiv = 12,000 K E.J. Salumbides, et. al. Phys. Rev. Lett. 107, 043005 (2011)

52 Results: high-J states in X 1  g +, v=0 of H 2 molecule J max (v=0) = 8 T equiv = 12,000 K E.J. Salumbides, et. al. Phys. Rev. Lett. 107, 043005 (2011) Uncertainty estimate (MHz) Line fitting 5 Residual Doppler <1 I 2 calibration 5 etalon nonlinearity 5 ac-Stark shift 50 dc-Stark shift 10 PDA chirp 150 Statistical 30 Total 160 or 0.005 cm -1 or relative uncertainty 5 x 10 -8

53  Determine energies of X, v=0 rotational quantum states E.J. Salumbides, et. al. Phys. Rev. Lett. 107, 043005 (2011) Results: high-J states in X 1  g +, v=0 of H 2 molecule

54 M. Niu, et. al. J. Mol. Spectr. 300, 44-54 (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, 193601 (2013) Results: fundamental vibrational splitting in X 1  g + state of Hydrogen molecule

55 M. Niu, et. al. J. Mol. Spectr. 300, 44-54 (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, 193601 (2013) Uncertainty estimate (MHz) AC-Stark < 0. 4 DC-Stark < 0. 1 Frequency chirp 2.0 Frequency calibration 0.1 Residual 1st-order Doppler H2 0.5 HD 0.3 D2 0.3 2nd-order Doppler < 0. 1 Pressure shift < 0. 1 Statistics H2 1.5 HD 1.6 D2 1.9 Total Uncertainty H2 2.6 HD 2.6 D2 2.8 or relative uncertainty 1 x 10 -9

56 M. Niu, et. al. J. Mol. Spectr. 300, 44-54 (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, 193601 (2013) Determine energy of on fundamental ground state vibration band (v = 0-1) Results: fundamental vibrational splitting in X 1  g + state of Hydrogen molecule

57 Fifth force constraints : EJS, Koelemeij, Komasa, Pachucki, Eikema, Ubachs, Phys Rev D 87, 112008 (2013). Phys Rev D 87, 112008 (2013).

58 Preliminary results D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), 827-846. J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.


Download ppt "Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu."

Similar presentations


Ads by Google