Perfect Fluidity of QGP at RHIC? Tetsufumi Hirano Institute of Physics University of Tokyo Komaba, Tokyo 153-8902, Japan 平野哲文 东京大学 References: T.Hirano.

Slides:



Advertisements
Similar presentations
Huichao Song The Ohio State University Lawrence Berkeley National Lab Viscous Hydro +URQMD In collaboration with S.Bass, U.Heinz, C.Shen, P.Huovinen &
Advertisements

New Results from Viscous Hydro + URQMD (VISHNU) International School for High Energy Nuclear Collisions, Wuhan, Oct 31- Nov.5, 2011 References: Supported.
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
Hadronic Rescattering Effects after Hadronization of QGP Fluids Tetsufumi Hirano Institute of Physics, University of Tokyo Workshop “Hadronization” in.
Hadronic dissipative effects on transverse dynamics at RHIC Tetsufumi Hirano Dept. of Physics The Univ. of Tokyo QM2008, Feb. 4-10, 2008 TH, U.Heinz, D.Kharzeev,
Collective Flow from QGP Hydro + Hadronic Cascade Tetsufumi Hirano Dept. of Physics The Univ. of Tokyo ISMD, Aug. 4-10, 2007 TH, U.Heinz, D.Kharzeev, R.Lacey,
Mass ordering of differential elliptic flow and its violation for  mesons Tetsufumi Hirano Dept. of Physics, The Univ. of Tokyo Matsumoto, Feb ,
Hydrodynamic Approaches to Relativistic Heavy Ion Collisions Tetsufumi Hirano RIKEN BNL Research Center.
What can we learn from hydrodynamic analysis at RHIC? Tetsufumi Hirano Dept. of Physics, Columbia Univ. Workshop on Quark-Gluon-Plasma Thermalization August.
Flow and Femtoscopy from QGP Hydro + Hadronic Cascade Tetsufumi Hirano Dept. of Physics The Univ. of Tokyo WPCF, Aug. 1-3, 2007.
Marcus Bleicher, WWND 2008 A fully integrated (3+1) dimensional Hydro + Boltzmann Hybrid Approach Marcus Bleicher Institut für Theoretische Physik Goethe.
Collective Flow Effects and Energy Loss in ultrarelativistic Heavy Ion Collisions Zhe Xu USTC, Hefei, July 11, 2008 with A. El, O. Fochler, C. Greiner.
WWND, San Diego1 Scaling Characteristics of Azimuthal Anisotropy at RHIC Michael Issah SUNY Stony Brook for the PHENIX Collaboration.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Transverse flow fluctuations:
QGP and Dynamics of Relativistic Heavy Ion Collisions Tetsufumi Hirano The University of Tokyo, Komaba Thermal Quantum Field Theories and Their Applications.
Toward understanding of Quark-Gluon Plasma in relativistic heavy ion collisions Tetsufumi Hirano Dept. of Physics The University of Tokyo.
S C O T T PRATPRAT MICHIGANMICHIGAN S T T E UNIVRSITYUNIVRSITY T H BTBT PUZZLE PUZZLE Z A N D E X T E N D I N G HYRODYNAMICS HYRODYNAMICS.
Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,
Hydrodynamical Simulation of Relativistic Heavy Ion Collisions Tetsufumi Hirano Strongly Coupled Plasmas: Electromagnetic, Nuclear and Atomic.
Viscous hydrodynamics DPF 2009 Huichao Song The Ohio State University Supported by DOE 07/30/2009 July 27-July 31, Detroit, MI with shear and bulk viscosity.
Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto, Japan, Oct. 31-Nov. 3, 2011 Tetsufumi Hirano Sophia Univ./the Univ. of Tokyo.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
QGP hydro + hadronic cascade model: Status report Tetsufumi Hirano Dept. of Physics The Univ. of Tokyo RCNP, Oct , 2007 TH, U.Heinz, D.Kharzeev,
Open data table of hydrodynamic simulations for jet quenching calculations Tetsufumi Hirano Institute of Physics, University of Tokyo Original work: TH,
Workshop for Particle Correlations and Femtoscopy 2011
What can we learn from hydrodynamic analysis of elliptic flow? Tetsufumi Hirano Dept. of Physics, Columbia Univ. T.H. and M.Gyulassy, nucl-th/ T.H.,
Dynamical Modeling of Relativistic Heavy Ion Collisions Tetsufumi Hirano Workshop at RCNP, Nov 4, 2004 Work in partly collaboration with Y.Nara (Frankfurt),
Heavy Ion Meeting, Yonsei University Seoul, Dec. 10, 2011 T.H., P.Huovinen, K.Murase, Y.Nara (in preparation)
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Viscous Hydrodynamics Heavy Ion Meeting December 10.
Relativistic Ideal and Viscous Hydrodynamics Tetsufumi Hirano Department of Physics The University of Tokyo The University of Tokyo Intensive Lecture YITP,
K. Ohnishi (TIT) K. Tsumura (Kyoto Univ.) T. Kunihiro (YITP, Kyoto) Derivation of Relativistic Dissipative Hydrodynamic equations by means of the Renormalization.
Theoretical Overview Tetsufumi Hirano Department of Physics The University of Tokyo Homepage of Heavy Ion Café
Dynamical Modeling of Relativistic Heavy Ion Collisions
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano V iscous Hydrodynamic Expansion of the Quark- Gluon Plasma.
Viscous hydrodynamics Quark Matter 2009 Huichao Song and Ulrich Heinz The Ohio State University Supported by DOE 04/02/2009 March 30-April 4, Knoxville,
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Perfect Fluid QGP or CGC? Tetsufumi Hirano* Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,
Dynamical Modeling of Heavy Ion Collisions Tetsufumi Hirano Department of Physics The University of Tokyo The University of Tokyo YITP 12/10/2008.
Hydrodynamic Models of Heavy-Ion Collisions Tetsufumi Hirano RIKEN BNL Research Center.
Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 1 / Masashi Kaneta LBNL
Peter Kolb, CIPANP03, May 22, 2003what we learn from hydro1 What did we learn, and what will we learn from Hydro CIPANP 2003 New York City, May 22, 2003.
11/18/2003Tetsufumi Hirano (RBRC)1 Rapidity Dependence of Elliptic Flow from Hydrodynamics Tetsufumi Hirano RIKEN BNL Research Center (Collaboration with.
Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,
Scaling of Elliptic Flow for a fluid at Finite Shear Viscosity V. Greco M. Colonna M. Di Toro G. Ferini From the Coulomb Barrier to the Quark-Gluon Plasma,
Elliptic flow and shear viscosity in a parton cascade approach G. Ferini INFN-LNS, Catania P. Castorina, M. Colonna, M. Di Toro, V. Greco.
HBT puzzle: from an ideal hydrodynamic point of view Tetsufumi Hirano RHIC/AGS user’s meeting, BNL, NY, June 21, 2005.
Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,
Hydrodynamic Modeling of Heavy Ion Collisions Tetsufumi Hirano 平野哲文 Department of Physics The University of Tokyo The University of Tokyo ATHIC2008 Tsukuba.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
S. PrattNSCL/MSU Deciphering the Space-Time Evolution of Heavy-Ion Collisons with Correlation Measurements Scott Pratt Michigan State University.
Dynamical Modeling of Relativistic Heavy Ion Collisions Tetsufumi Hirano hirano_at_phys.s.u-tokyo.ac.jp Collaborators:
Glasma, minijets, strings  long range  correlations  Venugopalan Ask: how does viscous flow modify these correlations? Viscosity, Flow and the Ridge.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Hydrodynamic Analysis of Relativistic Heavy Ion Collisions at RHIC and LHC Tetsufumi Hirano The Univ. of Tokyo & LBNL Collaborators: Pasi Huovinen and.
Spectra and Flow from a Full 3D Hydro+Cascade Model Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A.
Charm elliptic flow at RHIC B. Zhang 1, L.W. Chen 2, C.M. Ko 3 1 Arkansas State University, 2 Shanghai Jiao Tong University, 3 Texas A&M University Charm.
Heavy quark energy loss in hot and dense nuclear matter Shanshan Cao In Collaboration with G.Y. Qin, S.A. Bass and B. Mueller Duke University.
Viscous Hydrodynamic Evolution for the CGC at RHIC and LHC Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano.
3-D Hydro: present and future Tetsufumi Hirano Columbia University Second RHIC II Science BNL, Probes of EOS.
June 4, Tokyo Anomalous Viscosity of an Expanding Quark-Gluon Plasma Masayuki ASAKAWA Department of Physics, Osaka University S. A. Bass,
Flow and Dissipation in Ultrarelativistic Heavy Ion Collisions September 16 th 2009, ECT* Italy Akihiko Monnai Department of Physics, The University of.
Collective motion at 5.5 TeV (from RHIC to the LHC) Raimond Snellings.
What do the scaling characteristics of elliptic flow reveal about the properties of the matter at RHIC ? Michael Issah Stony Brook University for the PHENIX.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano V iscous Hydrodynamic Evolution with Non-Boost Invariant Flow.
Duke University 野中 千穂 Hadron production in heavy ion collision: Fragmentation and recombination in Collaboration with R. J. Fries (Duke), B. Muller (Duke),
Hydro + Cascade Model at RHIC
Presentation transcript:

Perfect Fluidity of QGP at RHIC? Tetsufumi Hirano Institute of Physics University of Tokyo Komaba, Tokyo , Japan 平野哲文 东京大学 References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano, U.Heinz, D.Kharzeev, R.Lacey, Y.Nara, Phys.Lett.B 636 (2006)299.

OUTLINE “RHIC serves the perfect liquid” “RHIC serves the perfect liquid” Elliptic flow Elliptic flow Results from hydro + cascade model Results from hydro + cascade model Ratio of viscosity to entropy Ratio of viscosity to entropy Summary Summary

What is “Perfect Liquid”? A possibility of “Perfect Liquid QGP” is intriguing. In this context, a lot of people say, “QGP viscosity is small”. “QGP viscosity is small”. Viscosity is “small” in comparison with …, what??? I will discuss this issue later.

What is Elliptic Flow? How does the system respond to spatial anisotropy? Ollitrault (’92) Hydro behavior Spatial Anisotropy Momentum Anisotropy INPUT OUTPUT Interaction among produced particles dN/d   No secondary interaction 0 22 dN/d   0 22 2v22v2 x y 

Elliptic Flow from a Kinetic Theory b = 7.5fm Time evolution of v 2 generated through secondary collisions generated through secondary collisions saturated in the early stage saturated in the early stage sensitive to cross section (~m.f.p.~viscosity) sensitive to cross section (~m.f.p.~viscosity) Gluons uniformly distributed Gluons uniformly distributed in the overlap region dN/dy ~ 300 for b = 0 fm dN/dy ~ 300 for b = 0 fm Thermal distribution with Thermal distribution with T = 500 MeV v 2 is Zhang et al.(’99) View from collision axis ideal hydro limit t(fm/c) v2v2

Hydro Meets Data for the First Time at RHIC: “Current” Three Pillars 1. Perfect Fluid (s)QGP Core Ideal hydro description of the QGP phaseIdeal hydro description of the QGP phase Necessary to gain integrated v 2Necessary to gain integrated v 2 2. Dissipative Hadronic Corona Boltzmann description of the hadron phaseBoltzmann description of the hadron phase Necessary to gain enough radial flowNecessary to gain enough radial flow Necessary to fix particle ratio dynamicallyNecessary to fix particle ratio dynamically 3. Glauber Type Initial Condition Diffuseness of initial geometryDiffuseness of initial geometry TH&Gyulassy(’06),TH,Heinz,Kharzeev,Lacey,Nara(’06) A Lack of each pillar leads to discrepancy!

(CGC +)QGP Hydro+Hadronic Cascade 0 z t (Option) Color Glass Condensate sQGP core (Full 3D Ideal Hydro) HadronicCorona(Cascade,JAM) c.f. Similar approach by Nonaka and Bass (DNP04,QM05) TH et al.(’05-) 0.6fm/c

(1) Glauber and (2) CGC Hydro Initial Conditions Which Clear the First Hurdle Glauber modelGlauber model N part :N coll = 85%:15% N part :N coll = 85%:15% CGC modelCGC model Matching I.C. via e(x,y,  ) Matching I.C. via e(x,y,  ) Centrality dependence Rapidity dependence

p T Spectra for identified hadrons from QGP Hydro+Hadronic Cascade Caveat: Other components such as recombination and fragmentation should appear in the intermediate-high p T regions. dN/dy and dN/dp T are o.k. by hydro+cascade.

v 2 (N part ) from QGP Hydro + Hadronic Cascade Glauber: Early thermalization Early thermalization Mechanism? Mechanism? CGC: No perfect fluid? No perfect fluid? Additional viscosity Additional viscosity is required in QGP Importance of better understanding of initial condition Result of JAM: Courtesy of M.Isse TH et al.(’06)

Large Eccentricity from CGC Initial Condition x y Pocket formula (ideal hydro): v 2 ~ 0.2 RHIC energies v 2 ~ 0.2 RHIC energies Ollitrault(’92)

v 2 (p T ) for identified hadrons Glauber type initial condition CGC initial condition Mass dependence is o.k. v 2 (model) > v 2 (data)

Viscosity and Entropy 1+1D Bjorken flow Bjorken(’83)1+1D Bjorken flow Bjorken(’83) Baym(’84)Hosoya,Kajantie(’85)Danielewicz,Gyulassy(’85)Gavin(’85)Akase et al.(’89)Kouno et al.(’90)… (Ideal) (Viscous) Reynolds numberReynolds number  : shear viscosity (MeV/fm 2 ), s : entropy density (1/fm 3 ) where  /s is a good dimensionless measure (in the natural unit) to see viscous effects. R>>1  Perfect fluid Iso, Mori, Namiki (’59)

Why QGP Fluid + Hadron Gas Works? TH and Gyulassy (’06) ! Absolute value of viscosityAbsolute value of viscosity Its ratio to entropy densityIts ratio to entropy density Rapid increase of entropy density can make hydro work at RHIC. Deconfinement Signal?!  : shear viscosity, s : entropy density Kovtun,Son,Starinets(’05)

Digression (Dynamical) Viscosity  : ~1.0x10 -3 [Pa s] (Water 20 ℃ ) ~1.0x10 -3 [Pa s] (Water 20 ℃ ) ~1.8x10 -5 [Pa s] (Air 20 ℃ ) ~1.8x10 -5 [Pa s] (Air 20 ℃ ) Kinetic Viscosity  : ~1.0x10 -6 [m 2 /s] (Water 20 ℃ ) ~1.0x10 -6 [m 2 /s] (Water 20 ℃ ) ~1.5x10 -5 [m 2 /s] (Air 20 ℃ ) ~1.5x10 -5 [m 2 /s] (Air 20 ℃ ) [Pa] = [N/m 2 ] Non-relativistic Navier-Stokes eq. (a simple form) Neglecting external force and assuming incompressibility.  water >  air BUT water  air BUT water < air

Summary Perfect Fluid QGP + Dissipative Hadron + Glauber initial conditions does a good job. Perfect Fluid QGP + Dissipative Hadron + Glauber initial conditions does a good job. –Manifestation of deconfinement? CGC initial conditions spoil this agreement. CGC initial conditions spoil this agreement. Viscous QGP may compensate “CGC effect”. Viscous QGP may compensate “CGC effect”. Importance of better understanding initial conditions. Importance of better understanding initial conditions. To be or not to be (consistent with hydro), that is THE question. -- Anonymous

QGP mixed hadron Energy density in the transverse plane at midrapidity Energy in (four-)velocity plane at midrapidity Thank you! TH&Gyulassy(’06)

Viscosity from a Kinetic Theory See, e.g. Danielewicz&Gyulassy(’85) For ultra-relativistic particles, the shear viscosity is Ideal hydro:  0  0 shear viscosity  0 Transport cross section

A Long Long Time Ago… …we obtain the value R (Reynolds number)=1~10… Thus we may infer that the assumption of the perfect fluid is not so good as supposed by Landau.

A Final Piece of RHIC Jigsaw Puzzle? A much better understanding of initial condition is of initial condition is desperately needed. desperately needed. Glauber or CGC Or any other possible scenarios based on non-equilibrium models, instabilities, etc. for thermalization / isotropization mechanism. Distinguish via 3D jet tomography Adil, Gyulassy and TH (’06)

Results from Hydro + Cascade (III) Glauber-BGKCGC

v 2 (p T ) from Hydro: Past, Present and Future 2000 (Heinz, Huovinen, Kolb…) Ideal hydro w/ chem.eq.hadrons 2002 (TH,Teaney,Kolb…) +Chemical freezeout 2002 (Teaney…) +Dissipation in hadron phase 2005 (BNL) “RHIC serves the perfect liquid.” (TH,Gyulassy) Mechanism of v 2 (p T ) slope (TH,Heinz,Nara,…) +Color glass condensate Future “To be or not to be (consistent with hydro), that is THE question” -- anonymous -- anonymous History of differential elliptic flow ~History of development of hydro ~History of removing ambiguity in hydro 20-30% XXXXXXXXXXXXXX ????????????????? XXXXXXXXXXXXXX

Temperature Dependence of  /s We propose a possible scenario:We propose a possible scenario: Kovtun, Son, Starinets(‘05) Danielewicz&Gyulassy(’85) Shear Viscosity in Hadron GasShear Viscosity in Hadron Gas Assumption:  /s at T c in the sQGP is 1/4 Assumption:  /s at T c in the sQGP is 1/4  No big jump in viscosity at T c !

Ideal QGP Fluid + Dissipative Hadron Gas Models (1+1)D with Bjorken flow (2+1)D with Bjorken flow Full (3+1)D UrQMD A.Dumitru et al., PLB460,411(1999); PRC60,021902(1999); S.Bass and A.Dumitru, PRC61,064909(2000). N/A C.Nonaka and S.Bass, nucl-th/ RQMDN/A D.Teaney et al., PRL86,4783(2001), nucl-th/ ; D.Teaney, nucl-th/ N/A JAMN/AN/A TH, U.Heinz, D.Kharzeev, R.Lacey, and Y.Nara, PLB636299(2006). hydro cascade