A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.

Slides:



Advertisements
Similar presentations
Status of TRI P Rotary Visit to KVI 30 januari 2004 Klaus Jungmann.
Advertisements

Lyon 2005 DIPAC Lyon th DIPAC Lyon June 2005Ulrich Raich CERN AB/BDI Instrumentation in small, low energy machines Ulrich Raich CERN AB-BDI.
What is the ISOLDE cooler RFQ CB - ISCOOL H. Frånberg.
TRI  P Presentation to KVI Beleidscollege 9 May 2002 K. Jungmann.
TRI  P presentatie voor RUG College van Bestuur 17 februari 2003 Klaus Jungmann.
TRI  P presentatie voor KVI medewerkers 14 februari 2002 Klaus Jungmann Ad van den Berg Sytze Brandenburg.
RFQ Cooling Studies.
ISOLDE WS 2007 Results with ISCOOL a new Radio Frequency Quadrupole Cooler and Buncher at ISOLDE P. Delahaye, H. Frånberg, AB-OP-PSB, ISCOOL, COLLAPS,
outline introduction experimental setup & status
Kingdon Trap Hande Akbas Kealan Naughton Alexander Fuchs-Fuchs.
JYFLTRAP: Spectroscopy with multi-trap facility Facility Mass purified beams In-trap spectroscopy Future plans.
Operational aspects 2008 run ISCOOL Isolde workshop Nov 2008 Erwin Siesling.
DESIR Progress Report DESIR hall details defined for civil construction: - compressed air, liquid nitrogen, cooling water, etc detailed layout of RFQ-HRS.
Mass Spectroscopy Mass Spectrometry ä Most useful tool for molecular structure determination if you can get it into gas phase ä Molecular weight of.
PSSC Space Instrument Laboratory Plasma instrument calibration system provides an ion beam of energy range up to 130keV/charge in a clean room To develop.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
On-line tests RFQ cooler ISCOOL A quick summary P. Delahaye, H. Frånberg, I. Podadera ISCOOL, COLLAPS, ISOLDE collaboration.
Radioactive Ion Beam (RIB) Production at ISOLDE by the Laser Ion Source and Trap (LIST) Sven Richter for the LIST-, RILIS- and ISOLDE IS456 Collaborations.
Is an RFQ a good candidate for a next- generation underground accelerator? Underground Accelerator for Nuclear Astrophysics Workshop October 27-28, 2003.
Mahzad - 8/9/2007 AAC Presentation 1 High Pressure RF Studies Mahzad BastaniNejad Muons, Inc., Old Dominion University Muons, Inc.
Simulation and Off-line Testing of a Square-wave- driven RFQ Cooler and Buncher for TITAN Mathew Smith: UBC/TRIUMF ISAC Seminar 2005.
Proposed injection of polarized He3+ ions into EBIS trap with slanted electrostatic mirror* A.Pikin, A. Zelenski, A. Kponou, J. Alessi, E. Beebe, K. Prelec,
Carbon Injector for FFAG
TRImP in-flight separator, ion catcher and RFQ cooler/buncher
Status of vacuum & interconnections of the CLIC main linac modules C. Garion TE/VSC TBMWG, 9 th November 2009.
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Status of TRI  P Programme Advisory Committee To KVI 20 November 2003 Klaus Jungmann.
Collinear laser spectroscopy of 42g,mSc
Tools for Nuclear & Particle Physics Experimental Background.
KVI – Groningen Fundamental Interactions Klaus Jungmann RECFA Meeting, Amsterdam, 23 September 2005 AGOR.
P-bar d-cel: keV antiproton pulses David Lunney CSNSM (IN2P3-CNRS) Université de Paris Sud, Orsay  introduction and concept  p-bar d-cel simulations.
REFERENCES [1] C.Y. Tan, FNAL Beams-doc-3646-v16, 2011 [2] V.N. Aseev, TRACK, the beam dynamics code, PAC05 [3] S. Kurennoy, LA-UR TRANSMISSION.
LBNL 88'' cyclotron operations Status of the 88-Inch Cyclotron High-Voltage upgrade project December 14, 2009 Ken Yoshiki Franzen.
Calculation of the beam dynamics of RIKEN AVF Cyclotron E.E. Perepelkin JINR, Dubna 4 March 2008.
RFQ cooler and buncher project for ISOLDE Present status and off-line test results Hanna Frånberg, ISOLDE.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
EBIS ARR Jim Alessi May 4- 7, 2010 Technical Overview.
A mass-purification method for REX beams
Study of GEM Structures for a TPC Readout M. Killenberg, S. Lotze, J. Mnich, A. Münnich, S. Roth, M. Weber RWTH Aachen October 2003.
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Fundamental interactions and symmetries at low energies what does NUPECC say…. Time-reversal violation and electric dipole moments Time-reversal violation.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
TRI  P project & facility TRI  P separator Status & future plans TRI  P SEPARATOR: STATUS & FUTURE TRI  P Krakow 3-6 June 2004 Andrey Rogachevskiy.
Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Concept Preliminary Estimations A. Kolomiets Charge to mass ratio1/61/8 Input energy (MeV/u) Output energy (MeV/u)2.5(3.5) Beam.
Progress of Bunched Beam Electron Cooling Demo L.J.Mao (IMP), H.Zhang (Jlab) On behalf of colleagues from Jlab, BINP and IMP.
KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to.
PS-ESS and LEBT State of the art Lorenzo Neri Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
New MI Cavity Progress and Plans 2010 Joseph E. Dey Project X Collaboration Meeting September 8, 2010.
STATUS OF THE NC BUNCHING RFQ (Sub-task: SC-RFQ) Antonio Palmieri INFN-LNL.
Proposal to the INTC, 21. May 2007
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
Present and possible future schemes for hadron therapy linacs Alberto Degiovanni for the ADAM team HG2017 Workshop , Valencia.
Acknowledgements Slides and animations were made by Dr. Jon Karty Mass Spectrometry Facility Indiana University, Bloomington.
JYFL ION COOLER AND BUNCHER.
Physics design on Injector-1 RFQ
PANDA Collaboration Meeting
Mass Spectroscopy. Mass Spectroscopy Mass Spectrometry Most useful tool for molecular structure determination if you can get it into gas phase Molecular.
Precision Measurements of Very-Short Lived Nuclei
November 14, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
November 7, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
Summary & Concluding remarks
Physics Design on Injector I
A LINEAR RFQ TRAP FOR COOLING AND BUNCHING OF RADIOACTIVE ION BEAMS
Improvement of a dc-to-pulse conversion efficiency of FRAC
Presentation transcript:

A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project and facility Our concept Prototype tests Our design Simulations Conclusion TRI  P Group: G.P. Berg, U. Dammalapati, P.G. Dendooven, O. Dermois, G. Ebberink M.N. Harakeh, R. Hoekstra, L. Huisman, K. Jungmann, H. Kiewiet, R. Morgenstern, J. Mulder, G. Onderwater, A. Rogachevskiy, M. Sanchez-Vega, M. Sohani, M. Stokroos, R. Timmermans, E. Traykov, O. Versolato, L. Willmann and H.W. Wilschut Krakow, 3-6 June 2004

TRI  P project and facility Ion Catcher RFQ Cooler MOT Beyond the Standard Model TeV Physics Nuclear Physics Atomic Physics Particle Physics Production Target Magnetic Separator MeV meV keV eV neV AGOR cyclotron AGOR cyclotronIon catcher (gas-cell or thermal ioniser) Low energy beam line RFQ cooler/buncher MOT D D D D Q Q Q Q Q Q Q Q Magnetic separator Production target Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics Wedge

Our RFQ cooler/buncher concept Buffer gas pressure (He): ~10 -1 mbar RFQ ion coolerRFQ ion buncher 10eVthermal Trap position U+Vcos  t -(U+Vcos  t) 2 x 330 mm Switching on end electrodes RF capacitive coupling DC drag resistor chain Electronics designed for large range of isotopes UHV compatible design and materials Standard vacuum parts (NW160) ~10 -3 mbar Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

RFQ cooler prototype tests RFQ in vacuum Transverse cooling Velocity damping With and without a drag voltage on the segments Tests: Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Our RFQ cooler/buncher design Pressure cooler: ~10 -1 mbar ~10 -3 mbar He buffer gas Separate connections for trap segments Changeable separation electrodes with different aperture diameters Buffer gas: Helium for light ions (i.e. Na-21) (Heavier gas may be considered for Ra ions) Kapton foil 12.5  m 120 pF Stainless steel rods OFHC copper Preset frequencies: 0.5MHz, 1 MHz, 1.5 MHz RF amplitude: 150 V (peak-to-peak) UHV compatible resistors for drag voltage : Uncoated, 2.2 k  Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Simulations and calculation of E field Simulations Real 3D geometry Material properties Geometry separated to smaller parts Fine mesh and grid size 3D electric field map (RF and DC) RF electric potentialDC drag potential FEMLAB calculation examples: Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics F (x,y,z,t) = m * (dV (x,y,z,t) /dt) F (x,y,z,t) = E (x,y,z,t) * q dV (x,y,z,t) =(E (x,y,z,t) * q/m) * dt dr (x,y,z,t) =dV (x,y,z,t) * dt

Program input: Ion charge Ion mass KE Phase space distribution Electric field map (RF and DC) f RF RF amplitude Drag voltage step Gas pressure Standard ion mobility Number of ions Time step Program output: Single ion tracing Phase space distribution Confinement Transmission through exit aperture Ion tracing and distributions Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics Mathieu equation: aUaU qVqV q max = RF only (U=0) Ion tracing in RFQ guide Buffer gas cooling + DC drag Phase space distributions Ion trapping and extraction Confinement and transmission

Optimization using the simulations Main goal: collect all ions Confinement and transmission Optimize parameters (regions of stable operation): pressure and type of gas aperture diameters beam settings at entrance drag voltage step potentials on separation electrodes accumulation time (buncher) trap potential depth and shape Questions: phase dependence (cooler-buncher) phase dependence (switching) where do we loose ions (why?) ~ 2 eV q=0.5 p=0.025 mbar drag voltage=0.5V Buffer gas pressure RF: 1500 kHz, 21 Na +, 10 eV 950 m/s maximum transverse velocity 0.5 V drag voltage step Gas pressure  drag voltage Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Drag voltage and pressure dependence Drag voltage step 21 Na +, 10 eV Pressure: 0.01 mbar RF: 1500 kHz 950 m/s maximum transverse velocity  2 mm aperture 0.01 mbar – too low, exit energy high Drag voltage step 21 Na +, 10 eV Pressure: mbar RF: 1500 kHz 950 m/s maximum transverse velocity  2 mm aperture mbar low pressure limit Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Frequency and focus dependence Frequency 21 Na +, 10 eV 0.1 mbar buffer gas pressure 950 m/s maximum transverse velocity 0.5 V drag voltage step  2 mm aperture Higher frequency is preferred Maximum transverse velocity 21 Na +, 10 eV 1500 kHz radio frequency 950 m/s maximum transverse velocity 0.5 V drag voltage step  2 mm aperture Beam properties at entrance: just focus Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Cool and select (work in progress) Mass selectivity for 23 Na + / 21 Na + Scan line: U/V = const=0.17 m>M M m<M mass resolution  frequency q a RF and DC operation: Mass filter Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

LEBL and optimization of parameters (work in progress) Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics LEBL simulations: Extraction tube Einzel lenses Electrostatic steerers Quadrupole deflectors Low energy beam line RFQ cooler/buncher MOT EL QD ET Ion catcher

Conclusion Novel RF coupling and DC resistor chain tested on prototype RFQ Results from simulations in good agreement with experiment Mechanical, electrical and vacuum design completed RFQ cooler and buncher system ready soon Continue with simulations (LEBL) Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics