Frequency Limits of InP-based Integrated Circuits 805-893-3244, 805-893-5705 fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,

Slides:



Advertisements
Similar presentations
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Advertisements

Metal Oxide Semiconductor Field Effect Transistors
The state-of-art based GaAs HBT
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
SOI BiCMOS  an Emerging Mixed-Signal Technology Platform
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Device Research Conference 2011
High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
Sub-mm-Wave Technologies: Systems, ICs, THz Transistors Asia-Pacific Microwave Conference, November 8th, Seoul Mark.
Scaling of High Frequency III-V Transistors , fax Short Course, 2009 Conference on InP and Related Materials,
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
1999 IEEE Symposium on Indium Phosphide & Related Materials
Single-stage G-band HBT Amplifier with 6.3 dB Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department of Electrical.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
GHZ Wireless: Transistors, ICs, and System Design Plenary, 2014 German Microwave Conference, March, Aachen.
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Nanometer InP Electron Devices for VLSI and THz Applications
III-V HBT and (MOS) HEMT scaling
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Indium Phosphide Bipolar Integrated Circuits: 40 GHz and beyond Mark Rodwell University of California, Santa Barbara ,
THz Transistors, sub-mm-wave ICs, mm-wave Systems , fax 20th Annual Workshop on Interconnections within High.
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
InP HBT Digital ICs and MMICs in the GHz band , fax Mark Rodwell University of California, Santa.
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
Transistor and Circuit Design for GHz ICs , fax Mark Rodwell University of California, Santa Barbara.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits ,
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
On the Feasibility of Few-THz Bipolar Transistors , fax *Now at University of Texas, Austin Invited Paper,
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Lower Limits To Specific Contact Resistivity
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Presentation transcript:

Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer, C. Van de Walle University of California Santa Barbara P. Asbeck, A. Kummel, Y. Taur, University of California San Diego J. Harris, P. McIntyre, Stanford University C. Palmstrøm, University of Minnesota M. Fischetti University of Massachusetts Amherst Plenary, Indium Phosphide and Related Materials Conference, May 15-18, Matsue, Japan Sponsors J. Zolper, S. Pappert, M. Rosker DARPA (TFAST, SWIFT, FLARE) D. Purdy, I. Mack Office of Naval Research Kwok Ng, Jim Hutchby Semiconductor Research Corporation Mark Rodwell, E. Lind, Z. Griffith, S. R. Bank, A. M. Crook U. Singisetti, M. Wistey, G. Burek, A.C. Gossard University of California, Santa Barbara Collaborators (HBT) M. Urteaga, R. Pierson, P. Rowell, M-J Choe, B. Brar Teledyne Scientific Company X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc. S. Mohney Penn State University

Specific Acknowledgements (Prof.) Erik Lind 125 nm HBTs process technology theory / epi design Dr. Zach Griffith 500 & 250 nm HBTs 150 GHz Logic 100 GHz op-amps Dr. Mark Wistey InGaAs MOSFET process technology theory / epi design

THz Transistors are coming soon; both InP & Silicon InP Bipolars: 250 nm generation: → 780 GHz f max, 424 GHz f , 4-5 V BV CEO 125 nm & 62 nm nodes → ~THz devices IBM IEDM '06: 65 nm SOI CMOS → 450 GHz f max, ~1 V operation Intel Jan '07: 45 nm / high-K / metal gate continued rapid progress → continued pressure on III-V technologies If you can't beat them, join them ! unclear if Si MOSFETs will work well at sub-22-nm gate length InGaAs/InAs/InP channels under serious investigation for CMOS VLSI. Datta, DelAlamo, Sadana,... Z. Griffith

THz InP vs. near-THz CMOS: different opportunities 65 / 45 / 33 / nm CMOS vast #s of very fast transistors... having low breakdown, sloppy DC parameters what NEW mm-wave applications will this enable ? massive monolithic mm-wave arrays → 1 Gb/s over ~1 km mm-wave MIMO DC parameters limit analog precision...

THz InP vs. near-THz CMOS: different opportunities InP HBT: THz bandwidths, good breakdown, analog precision 340 GHz, 70 mW amplifiers (design) In future: 700 or 1000 GHz amplifiers ? & 200 GHz digital logic (design) In future: 450 GHz clock rate ? GHz gain-bandwidth op-amps→ low 2 GHz In future: 200 GHz op-amps for low-IM3 10 GHz amplifiers? Z. Griffith M. Urteaga (Teledyne) Z. Griffith M. Jones

Transistor Benchmarks f max matters no gain above 218 GHz Tuned amplifiers: f max sets bandwidth Mixed-signal: C cb  V/ I c, C je  V/ I c, R ex I c  V, R bb I c  V,  f BVCEO is not the only voltage limit ! Need Safe Operating Area...at least BV ceo /2 at J max /2 thermal resistance, high-current breakdown high-temperature operation (~75 C) ? Goal is >1 THz f  and f max <50 fs C  V / I charging delays → emphasize InP-collector DHBTs

HBT Scaling Laws

InP DHBTs: May nm 600nm nm

HBT Scaling Roadmaps

emitter 500 nm width 16  m 2 contact  base 300 width, 20  m 2 contact  collector 150 nm thick, 5 mA/  m 2 current density 5 V, breakdown f  400 GHz f max 500 GHz power amplifiers 250 GHz digital clock rate 160 GHz (static dividers) 2005: InP 500 nm Scaling Generation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (178 GHz) (150 GHz)

emitter nm width 16 9  m 2 access  base width,  m 2 contact  collector nm thick, 5 10 mA/  m 2 current density V, breakdown f  GHz f max GHz power amplifiers GHz digital clock rate GHz (static dividers) 2006: 250 nm Scaling Generation, 1.414:1 faster ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (425 GHz) (780 GHz)

emitter nm width  m 2 access  base width,  m 2 contact  collector nm thick, mA/  m 2 current density V, breakdown f  GHz f max GHz power amplifiers GHz digital clock rate GHz (static dividers) 2007: 125 nm Scaling Generation → almost-THz HBT ✓ ✓ ✓ ✓ ✓ ✓ ✓

emitter nm width  m 2 access  base nm width,  m 2 contact  collector nm thick, mA/  m 2 current density V, breakdown f  GHz f max GHz power amplifiers GHz digital clock rate GHz (static dividers) : 65 nm Scaling Generation→beyond 1-THz HBT ✓ ✓

HBT Scaling Challenges

Scaling challenges: What looks easy, what looks hard ? key device parameterrequired change collector depletion layer thicknessdecrease 2:1 base thicknessdecrease 1.414:1 emitter junction widthdecrease 4:1 collector junction widthdecrease 4:1 emitter resistance per unit emitter areadecrease 4:1 current densityincrease 4:1 base contact resistivity (if contacts lie above collector junction) decrease 4:1 base contact resistivity (if contacts do not lie above collector junction) unchanged Hard: Thermal resistance (ICs) Emitter contact + access resistance Yield in deep submicron processes Contact electromigration (?), dark-line defects (?) Probably not as hard : Maintaining adequate breakdown for 3 V operation...

Temperature Rise: Transistor, Substrate, Package

HBTs: 500 nm Generation

500 nm Generation in Manufacturing: Teledyne Self-aligned Dielectric Sidewall Process Emitter Contact Base Contact Dielectric Sidewall f  = 405GHz f max = 392 GHz RF Gains J E = 6.5 mA/um 2 V CE = 1.5 V No short-circuits from liftoff defects. Emitter can be much thinner → small etch undercut. M. Urteaga et al, 2004 IEEE Device Research Conference, June 21-23, 2004 Electroplate emitter contact Etch emitter semiconductor Dielectric sidewall deposition Base contact patterning Selectively deposit base metal c.f. also Minh Le et al IEDM 2006 (Vitesse)

Example ICs in 500 nm HBT 142 GHz, 800 mW master/slave latch mesa HBT UCSB sidewall /pedestal HBT Teledyne 128 GHz, 206 mW master/slave latch 175 GHz, 7.5 mW medium-power amp. mesa HBT UCSB Other Results: 160 Gb/s multiplexer (T. Swahn et al, Chalmers / Vitesse) ~5000-HBT direct-digital frequency synthesis ICs (Vitesse, Teledyne) V. Paidi Z. Griffith M. Urteaga P. Rowell D. Pierson B. Brar

HBTs: 250 nm Generation

250 nm scaling generation InP DHBTs Emitter contact resistance 5  m 2 Base contact resistance is < 5  m 2 Z. Griffith E. Lind

DHBTs: 250 nm Scaling Generation 150 nm thick collector60 nm thick collector Emitter access: 5.1  m 2 Base contact: 6.3  m 2 Z. Griffith E. Lind

Example IC Designs in 250 nm HBT 200 GHz master-slave latches...fabrication on hold GHz, 70 mW, medium-power amplifiers...fabrication planned summer/fall 2007 M. Jones Z. Griffith

125 nm InP HBT development

Emitter Access Resistance 125 nm generation requires 5  - μm 2 emitter resistivities 65 nm generation requires 1-2  - μm 2 Recent Results: ErAs/Mb MBE in-situ1.5  - μm 2 Mb MBE in-situ 0.6  - μm 2 TiPdAu ex-situ 0.5  - μm 2 TiW ex-situ 0.7  - μm 2 Degeneracy contributes 1  - μm 2 20 nm emitter-base depletion layer contributes 1  - μm 2 resistance T e =0 nm T e =100 nm Erik Lind Adam Crook Seth Bank Uttam Singisetti 10 nm steps

Epitaxial Layer Development for 125 nm Generation InGaAs base: low sheet resistivity, low transit time, but collector must be graded low-current breakdown dominated by tunneling in setback layer Erik Lind 1) less superlattice periods... 2) thinner (sub-monolayer) superlattice periods → random alloy grade 3) thin GaAs/InGaAs strained-layer grade DC data shows expected increase in breakdown. Transport (RF) data is pending. : Zach Griffith B-C grade redesign: thin the setback, thin the grade calculation

125 nm Emitter Process Blanket sputter deposition TiW emitter contact metal Optical lithography → ICP reactive-ion etching ICP RIE etch of InGaAs/InP semiconductor, Selective wet etch to base Erik Lind 125 nm emitter500 nm undercut at emitter ends 61 nm junction: 40 nm lateral undercut

UCSB 125 nm DHBT Development 125 nm emitter process Emitter Metal InGaAs/InP emitter contact resistivity ~ 0.7  - μm 2 base contact resistivity ~ 3-5  -μm 2 Target performance ~ GHz simultaneous f t & f max, 3-4 V breakdown Erik Lind Adam Crook

How might we build the 62.5 nm HBT ? Mesa process: control of etch undercut with dry+wet process Alternatives: - dielectric sidewall process - sidewall process with extrinsic base regrowth: allows thinner base

InP-based FETs; MOSFETs & HEMTs

InP-based HEMTs & MOSFETs : Why ? A ~2.5:1 f  / f signal ratio provides 3 dB noise figure. Low-noise GHz preamplification is a key application for 1-THz-f  HEMTs InGaAs/InP HEMTs: mm-wave low-noise amplifiers InGaAs/InP MOSFETs: post-22-nm VLSI (?) Higher mobility and peak electron velocity than in Silicon → higher ( I d / W g ) and lower ( C  V / I ) at sub-22-nm scaling (?)

Some Encouraging Initial Data non-parabolic bands (variable m*) significantly increase feasible sheet charge Asbeck / Fischetti / Taur simulate drive currents much larger than for constant-m* model -- mobilities seem to be acceptable even in thin wells M. Wistey preliminary data... and our current device designs... device design and fabrication: Asbeck group: UCSD Taur group: UCSD Fischetti group: U. Mass Rodwell group: UCSB Palmstrøm group: U. Minn well: 2.5 nm InGaAs, 2.5 nm InP N+ InGaAs/InAs extrinsic source & drain by regrowth

Frequency Limits of InP-based Integrated Circuits Scaling limits: contact resistivities, device and IC thermal resistances. InP Bipolar Transistors 62 nm (1 THz f , 1.5 THz f max ) scaling generation is feasible. 700 GHz amplifiers, 450 GHz digital logic Is the 32 nm (1 THz amplifiers) generation feasible ? InP Field-Effect Transistors Low electron effective mass → difficulties with further scaling Guarded optimism regarding 22 nm generation for VLSI Serious difficulties beyond.

(end)

non-animated versions of the three key scaling slides

HBT scaling laws Goal: double transistor bandwidth when used in any circuit → keep constant all resistances, voltages, currents → reduce 2:1 all capacitances and all transport delays → thin base ~1.414:1 → thin collector 2:1 → reduce junction areas 4:1 → reduce emitter contact resistivity 4:1 (current remains constant, as desired ) → reduce base contact resistivity 4:1 reduce widths 2:1 & reduce length 2:1 → constant R bb reducing widths 4:1, keep constant length → reduced R bb need to reduce junction areas 4:1 reduce widths 2:1 & reduce length 2:1 → doubles  T reducing widths 4:1, keep constant length→ small  T increase ✓ ✓ ✓✓ Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

Back-of-Envelope FET Scaling (non-degenerate) c eq doubled thin layers 2:1 Goal double transistor bandwidth when used in any circuit → reduce 2:1 all capacitances and all transport delays → keep constant all resistances, voltages, currents ✓ g m, I d held constant reduce W g 2:1 ✓ C gs reduced 2:1 dielectricfringing ✓ (C gd, C s-b, C d-b ) all reduced 2:1 reduce L g 2:1 ✓ (R s, R d ) held constant reduce L s/d 2:1,reduce  c 4:1 2:1 vertical scaling → 2:1 increased ( g m / W g ) → 2:1 reduced W g → 2:1 reduced fringing capacitances

FETs no longer scale well tunneling through oxide → high-K dielectrics (if feasible) Low density of states limits drive current density-of-states term dominates, limits ( g m / W g )and ( I d / W g ) → fringing & substrate capacitances no longer scale, can dominate over C gs Solomon & Laux, 2001 IEDM Thin layers & low effective mass limit channel sheet charge density high sheet-charge in thin well → populate higher-mass band minima infinite well approximation Thin quantum wells have low mobility Li SST 2005; Gold et al, SSC 1987; Sakaki et al, APL 1987

InP DHBT: 500 nm Scaling Generation 600 nm wide emitter, 120 nm thick collector, 30 nm thick base Z. Griffith