BIOPHYS A PHYSICALLY-BASED CONTINUOUS FIELDS ALGORITHM and Climate and Carbon Models FORREST G. HALL, FRED HUEMMRICH Joint Center for Earth Systems Technology.

Slides:



Advertisements
Similar presentations
Lumped Parameter Modelling UoL MSc Remote Sensing Dr Lewis
Advertisements

Beyond Spectral and Spatial data: Exploring other domains of information GEOG3010 Remote Sensing and Image Processing Lewis RSU.
Earth Observation for Agriculture – State of the Art – F. Baret INRA-EMMAH Avignon, France 1.
Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
1 Characterization of Spatial Heterogeneity for Scaling Non Linear Processes S. Garrigues 1, D. Allard 2, F. Baret 1. 1 INRA-CSE, Avignon, France 2 INRA-Biométrie,
Scaling Biomass Measurements for Examining MODIS Derived Vegetation Products Matthew C. Reeves and Maosheng Zhao Numerical Terradynamic Simulation Group.
Crop Canopy Sensors for High Throughput Phenomic Systems
Mike Barnsley & Tristan Quaife, UWS. GLC2000, Ispra, March Estimating Land Surface Biophysical Properties using SPOT-4 VGT Mike Barnsley and Tristan.
SKYE INSTRUMENTS LTD Llandrindod Wells, United Kingdom.
PhD remote sensing course, 2013 Lund University Understanding Vegetation indices PART 1 Understanding Vegetation indices PART 1 : General Introduction.
W. McNair Bostick, Oumarou Badini, James W. Jones, Russell S. Yost, Claudio O. Stockle, and Amadou Kodio Ensemble Kalman Filter Estimation of Soil Carbon.
Estimating forest structure in wetlands using multitemporal SAR by Philip A. Townsend Neal Simpson ES 5053 Final Project.
MODIS Science Team Meeting - 18 – 20 May Routine Mapping of Land-surface Carbon, Water and Energy Fluxes at Field to Regional Scales by Fusing Multi-scale.
Green Vegetation Fraction (GVF) derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard the SNPP satellite Zhangyan Jiang 1,2,
The Orbiting Carbon Observatory Mission: Effects of Polarization on Retrievals Vijay Natraj Advisor: Yuk Yung Collaborators: Robert Spurr (RT Solutions,
Princeton University Global Evaluation of a MODIS based Evapotranspiration Product Eric Wood Hongbo Su Matthew McCabe.
VENUS (Vegetation and Environment New µ-Spacecraft) A demonstration space mission dedicated to land surface environment (Vegetation and Environment New.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
BOSTON UNIVERSITY GRADUATE SCHOOL OF ART AND SCIENCES LAI AND FPAR ESTIMATION AND LAND COVER IDENTIFICATION WITH MULTIANGLE MULTISPECTRAL SATELLITE DATA.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
CSIRO LAND and WATER Estimation of Spatial Actual Evapotranspiration to Close Water Balance in Irrigation Systems 1- Key Research Issues 2- Evapotranspiration.
DROUGHT MONITORING THROUGH THE USE OF MODIS SATELLITE Amy Anderson, Curt Johnson, Dave Prevedel, & Russ Reading.
BIOPHYS A PHYSICALLY-BASED CONTINUOUS FIELDS ALGORITHM Ecosystem, Climate and Carbon Models FORREST G. HALL, FRED HUEMMRICH Joint Center for Earth Systems.
Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2 Caroline J. Nichol 3 Piers J. Sellers 1 1 NASA Goddard Space.
Radiometric and biophysical measures of global vegetation from multi-dimensional MODIS data Ramakrishna Nemani NTSG.
Global NDVI Data for Climate Studies Compton Tucker NASA/Goddard Space Fight Center Greenbelt, Maryland
Spatially Complete Global Surface Albedos Derived from MODIS Data
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
The role of remote sensing in Climate Change Mitigation and Adaptation.
Antwerp march A Bottom-up Approach to Characterize Crop Functioning From VEGETATION Time series Toulouse, France Bucharest, Fundulea, Romania.
Nadia Richard Fernandes & Michael Chelle Does Needle Clumping Affect Shoot Scattering and Canopy BRDF ?
TEMPO & GOES-R synergy update and GEO-TASO aerosol retrieval for TEMPO Jun Wang Xiaoguang Xu, Shouguo Ding, Cui Ge University of Nebraska-Lincoln Robert.
A detailed look at the MOD16 ET algorithm Natalie Schultz Heat budget group meeting 7/11/13.
Generating fine resolution leaf area index maps for boreal forests of Finland Janne Heiskanen, Miina Rautiainen, Lauri Korhonen,
Remote Sensing of Vegetation. Vegetation and Photosynthesis About 70% of the Earth’s land surface is covered by vegetation with perennial or seasonal.
1 Lecture 7 Land surface reflectance in the visible and RIR regions of the EM spectrum 25 September 2008.
Satellite observations of terrestrial ecosystems and links to climate and carbon cycle Bases of remote sensing of vegetation canopies The Greening trend.
7/24/02 MODIS Science Meeting Seasonal Variability Studies Across the Amazon Basin with MODIS Vegetation Indices Alfredo Huete 1, Kamel Didan 1, Piyachat.
ORNL DAAC MODIS Subsetting and Visualization tools Tools and services to access subsets of MODIS data Suresh K. Santhana Vannan National Aeronautics and.
BIOPHYS: A Physically-based Algorithm for Inferring Continuous Fields of Vegetative Biophysical and Structural Parameters Forrest Hall 1, Fred Huemmrich.
LAI/ fAPAR. definitions: see: MOD15 Running et al. LAI - one-sided leaf area per unit area of ground - dimensionless fAPAR - fraction of PAR (SW radiation.
EG2234: Earth Observation Interactions - Land Dr Mark Cresswell.
Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali.
2005 ARM Science Team Meeting, March 14-18, Daytona Beach, Florida Canada Centre for Remote Sensing - Centre canadien de télédétection Geomatics Canada.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Daily BRDF/Albedo Algorithm for MODIS Direct Broadcast Sites Crystal Schaaf(1), Alan Strahler(1), Curtis Woodcock(1), Yanmin Shuai(1), Jicheng Liu(1),
14 ARM Science Team Meeting, Albuquerque, NM, March 21-26, 2004 Canada Centre for Remote Sensing - Centre canadien de télédétection Geomatics Canada Natural.
Assessing the Phenological Suitability of Global Landsat Data Sets for Forest Change Analysis The Global Land Cover Facility What does.
Goal: to understand carbon dynamics in montane forest regions by developing new methods for estimating carbon exchange at local to regional scales. Activities:
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Terra MODIS Collection 4 / 4.5 and Aqua MODIS Collection 4; Sinusoidal Projection Data from 2000 to present; 8-day, 16-day, or annual composites Sites.
GEOGG121: Methods Inversion I: linear approaches Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel:
Beyond Spectral and Spatial data: Exploring other domains of information: 3 GEOG3010 Remote Sensing and Image Processing Lewis RSU.
Estimating the uncertainties in the products of inversion algorithms or, how do we set the error bars for our inversion results? Emmanuel Boss, U. of Maine.
SIMULATION OF ALBEDO AT A LANDSCAPE SCALE WITH THE D.A.R.T. MODEL AN EFFICIENT TOOL FOR EVALUATING COARSE SCALE SATELLITE PRODUCTS? Sylvie DUTHOIT*, Valérie.
Objectives The Li-Sparse reciprocal kernel is based on the geometric optical modeling approach developed by Li and Strahler, in which the angular reflectance.
0 0 Robert Wolfe NASA GSFC, Greenbelt, MD GSFC Hydrospheric and Biospheric Sciences Laboratory, Terrestrial Information System Branch (614.5) Carbon Cycle.
MODIS Atmosphere Products: The Importance of Record Quality and Length in Quantifying Trends and Correlations S. Platnick 1, N. Amarasinghe 1,2, P. Hubanks.
References: 1)Ganguly, S., Samanta, A., Schull, M. A., Shabanov, N. V., Milesi, C., Nemani, R. R., Knyazikhin, Y., and Myneni, R. B., Generating vegetation.
MODIS/VIIRS LAI & FPAR – 2016 UPDATE Ranga B. Myneni 1 Kai Yan Taejin ParkChi Chen Yuri Knyazikhin.
Estimation of surface characteristics over heterogeneous landscapes from medium resolution sensors. F. Baret 1, S. Garrigues 1, D. Allard 2, R. Faivre.
Comparison of GPP from Terra-MODIS and AmeriFlux Network Towers
Vegetation Indices Radiometric measures of the amount, structure, and condition of vegetation, Precise monitoring tool phenology inter-annual variations.
Vegetation Indices Radiometric measures of the amount, structure, and condition of vegetation, Precise monitoring tool phenology inter-annual variations.
Lumped Parameter Modelling
Sources of Variability in Canopy Spectra and the Convergent Properties of Plants Funding From: S.V. Ollinger, L. Lepine, H. Wicklein, F. Sullivan, M. Day.
Igor Appel Alexander Kokhanovsky
Igor Appel TAG LLC, Washington, USA
Presentation transcript:

BIOPHYS A PHYSICALLY-BASED CONTINUOUS FIELDS ALGORITHM and Climate and Carbon Models FORREST G. HALL, FRED HUEMMRICH Joint Center for Earth Systems Technology (JCET) NASA's Goddard Space Flight Center Greenbelt, MD Derek Peddle Lethbridge University Alberta, Canada David Landis SSAI Lanham, MD

The Chasm  si =  ( LAD, LOP, BOP, h/w, LAI C, LAI b, CC) NDVI CANOPY MODELER Climate, Carbon Modeler

Remote Sensing Algorithms Fapar = F(  si | LC) Land Cover (LC) Classification Climate, Carbon Models Parameter Maps (Fpar, LC) LAI = F (Fpar, LC) Satellite (spectral, angular, temporal)  si ( Ωi) , Fpar, g c, Z o, P v,NP v, LAI B Cndtns, Validation, Assimilation LOP&BOP= leaf&background optical properties Cg = Canopy geometry LAI C = Crown leaf area index LAI b = Branch leaf area index CC = fractional crown cover Classification Algorithms (CA) LC = CA(  si )  si ( Ωi) =  (LOP, BOP,Cg, h/w, LAI C, LAI b, CC) = F ( LAI, Fpar, LC) Problems Algorithm Locality: Spectral change with illumination view geometry, background, season etc.affects robustness. “Chicken & Egg Syndrome”: Radiance correction for view and illumination angle to infer biophysical parameters depends on the parameters. Parameter Inconsistency: Different algorithms for different parameters. Error structures: Error, uncertainty characterization approximate, empirical. Model utility: Inability to directly assimilate satellite radiances in CWE models.

BIOPHYS An Analysis Framework linking 30+ Years of Canopy Radiative Transfer Model Research Directly to Biophysical Parameter Retrieval

Satellites (spectral, angular, temporal)  si ( Ωi) CANOPY CRT MODEL (Tables) {  si } =  ( LOP,BOP,Cg,LAI C,LAI b,CC) Satellite Measurement ( L2 ) {  si ± ∆  si } i i bands, angles, dates Table Lookup {LOP,BOP,Cg,LAI C,LAI b,CC } k  {  si ± ∆  si } i Compute Parameter Statistics Model Parameters , Fpar, g c, Z o, P v,NP v = F( ) Biophys Framework Numerical, Non-analytic

MODIS SURFACE Multi-Date BRDF Values (X i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i CANOPY CRT MODELS GOMS, GORT, 5-scale MODIS MEASURED BRDF (  i Ω i,t i ) MODIS SURFACE Multi-Date BRDF Values (X i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i BIOPHYS o o o LookUp Table CWE Parameters , Fpar, g c, Z o, P v,NP v … Canopy RT Parameters LAD,LOP,BOP,h/w,LAI C,LAI b, CC Climate, Carbon Models MODIS SURFACE Multi-Date BRDF Values (X i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i MODIS SURFACE Multi-Date BRDF Values (X i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i MODIS SURFACE Multi-Date BRDF Values (  i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i

MODIS SURFACE Multi-Date BRDF Values (X i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i CANOPY CRT MODELS GOMS, 5-scale MODIS MEASURED BRDF (  i Ω i ) MODIS SURFACE Multi-Date BRDF Values (X i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i Canopy Parameters ( LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i ) Canopy Parameter Possibilities LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i Given  i Ω i BIOPHYS/MFM SIMPLE, ELEGANT Can Use Non-Spectral Data (e.g. slope, aspect, biome, time, GDD) to Further Constrain Solutions o o o LookUp Table CWE Parameters , Fpar, g c, Z o, P v,NP v … Canopy RT Parameters LAD,LOP,BOP,h/w,LAI C,LAI b, CC Climate, Carbon Models   Fpar, g c, Z o, P v,NP v … F i (LAD,LOP,BOP,h/w,LAI C,LAI b, CC) Climate, Carbon Models Compute Parameter Statistics MODIS SURFACE Multi-Date BRDF Values (X i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i MODIS SURFACE Multi-Date BRDF Values (X i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i MODIS SURFACE Multi-Date BRDF Values (  i,Ω i ) Canopy Parameter Values LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i TABLE LOOKUP RETURN ALL ROWS FROM LOOK UP TABLE : SELECT*FROM TABLE WHERE (SCENE_REFL_RED_SZA30 BETWEEN AND AND SCENE_REFL_NIR_SZA30 BETWEEN AND ) AND (SCENE_REFL_RED_SZA45 BETWEEN AND AND SCENE_REFL_NIR_SZA45 BETWEEN AND ) AND (SCENE_REFL_RED_SZA50 BETWEEN AND AND SCENE_REFL_NIR_SZA50 BETWEEN AND ); MEASUREMENT= [(RED = & NIR = at SZA = 30 o ), (RED = & NIR = at SZA = 45 o ), (RED = & NIR = at SZA = 50 o )]

LAD i,LOP i,BOP i,h i /w i,LAI Ci,LAI bi, CC i SIMPLE EXAMPLE USING GEOSAIL Canopy  vis,  nir Canopy Parameters LAI avg within (±0.5%)  vis,  nir cells Canopy  vis,  nir Canopy Parameters Canopy  vis,  nir Canopy Parameters Canopy  vis,  nir Canopy Parameters 70,000 values LAI i = LAI Ci XCC i # Obs within a (±0.5%)  vis,  nir cell SZA = 30 o Standard Deviation of LAI avg within (±0.5%)  vis,  nir cells Near IR Visible Reflectance

Initial Retrieval Test Landsat, vis, nir (± 0.01) 16 sites, 3 solar angles (3 dates) 1983 Superior National Forest

Retrieval Test Landsat, vis, nir, 3SZA’s Crown Green LAI Three SZA retrievals drastically reduced the number of records returned. For only one SZA, generally the maximum SZA returned more records. With two SZA either the low pair or the high pair returned the most records. Number of retrieved records

Average Retrieved Crown Green LAI Average Retrieved Crown Green LAI varied little using 2 or more SZAs. Average Crown Green LAI

Average Retrieved Crown Cover Fraction Average Retrieved Crown Cover Fraction Sensitive to SZA Average Fractional Canopy Cover

Retrieval Precision vs Number of Records Retrieved-Crown Green LAI  Crown Green LAI

Retrieval Precision vs Number of Records Retrieved-Crown Cover  Crown Fractional Canopy Cover

Distribution of LAI Retrievals 16 sites, 3 solar angles (3 dates) 1983 Superior National Forest

Retrieval Results Distribution of Site LAI Retrievals

Retrieval Results Distribution of Canopy Component Retrievals - Crown LAI and CC LAI = LC i X CC i

Retrieval Results All SNF Spruce Sites Accuracies roughly equivalent to empirical approach Error structure automatically retrieved

Solutions Algorithm Locality: Physically- based retrievals incorporate reflectance responses to exogenous variables. “Chicken & Egg Syndrome”: BIOPHYS uses spectral dependence on view and illumination angle to improve retrieval accuracies. Parameter Inconsistency: BIOPHYS Parameter retrievals from a single algorithm using common input data. Error structures: Error, uncertainty an integral part of the retrieval. Model utility: BIOPHYS structure can assimilate data directly from within CWE models. BIOPHYS Problems Algorithm Locality: Spectral change with illumination view geometry, background, season etc.affects robustness. “Chicken & Egg Syndrome”: Radiance correction for view and illumination angle to infer biophysical parameters depends on the parameters. Parameter Inconsistency: Different algorithms for different parameters. Error structures: Error, uncertainty characterization approximate, empirical. Model utility: Inability to directly assimilate satellite radiances in CWE models.

BIOPHYS FRAMEWORK & OSSEs OBSERVING SYSTEM SIMULATION EXPERIMENT (OSSE) –OSSEs compute sensor/platform reqts in terms of biophysical parameter reqts. BIOPHYS FRAMEWORK provides a physically- based framework for computing –Retrieval precision as a function of sensor S/N –Retrieval bias as a function of sensor cal bias –Retrieval error as a function of band selection –Retrieval error as a function of CRT models

Finally BIOPHYS Framework Can Bridge the Chasm What’s Next –Wrap up exploratory work Investigate convergence of mean to actual –Select RT Model (GOMS, GORT …). Build the LUTs –Complete MODIS BIOPHYS Algorithm –Evaluate MODIS Products and Iterate PRODUCE PROVISIONAL DATA SETS WITH BIOPHYS OVER SELECTED STUDY REGIONS. PLACE PROVISIONAL DATA SETS ONLINE; INITIATE USER EVALUATION.

The Chasm CANOPY RT MODELER Climate, Carbon Modeler 2000 MODIS LAI, FPAR Circa Modeling Circa Inversion Circa 1996 Physically - Based Classification/MFM For Landsat BIOPHYS