Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
L3 January 221 Semiconductor Device Modeling and Characterization EE5342, Lecture 3-Spring 2002 Professor Ronald L. Carter
Advertisements

EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2009 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Physics
Semiconductor Physics - 1Copyright © by John Wiley & Sons 2003 Review of Basic Semiconductor Physics.
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
Chapter 2 Motion and Recombination
Lecture #7 OUTLINE Carrier diffusion Diffusion current Einstein relationship Generation and recombination Read: Sections 3.2, 3.3.
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
L 04 Sept 041 EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2003 Professor Ronald L. Carter
Potential vs. Kinetic Energy
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 3 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter
L04 24Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2002 Professor Ronald L. Carter
Carrier Transport Phenomena And Measurement Chapter 5 26 February 2014
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 - Fall 2009 Professor Ronald L. Carter
L06 31Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2002 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
Notes 27 February 2013.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 8 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Physics
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L4 January 271 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2005 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 4 – Spring 2011 Professor Ronald L. Carter
Lecture 5 OUTLINE Semiconductor Fundamentals (cont’d) – Carrier diffusion Diffusion current Einstein relationship – Generation and recombination Excess.
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2010
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Lecture 4 Carrier Transport Phenomena
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 03 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter

©rlc L07-07Feb20112 First Assignment to –In the body of the message include subscribe EE5342 This will subscribe you to the EE5342 list. Will receive all EE5342 messages If you have any questions, send to with EE5342 in subject line.

©rlc L07-07Feb20113 Second Assignment Submit a signed copy of the document that is posted at

©rlc L07-07Feb20114 Schedule Changes Due to the University Closures last week Plan to meet until noon some days in the next few weeks. This way we will make up the lost time. The first extended class will be Wednesday, February 9. The MT will be postponed until Wednesday, February 16. All other due dates and tests will remain the same.

©rlc L07-07Feb20115 Equipartition theorem The thermodynamic energy per degree of freedom is kT/2 Consequently,

©rlc L07-07Feb20116 Carrier velocity saturation 1 The mobility relationship v =  E is limited to “low” fields v < v th = (3kT/m*) 1/2 defines “low” v =  o E[1+(E/E c )  ] -1/ ,  o = v 1 /E c for Si parameter electrons holes v 1 (cm/s) 1.53E9 T E8 T E c (V/cm) 1.01 T T 1.68  2.57E-2 T T 0.17

©rlc L07-07Feb20117 v drift [cm/s] vs. E [V/cm] (Sze 2, fig. 29a)

©rlc L07-07Feb20118 Carrier velocity saturation (cont.) At 300K, for electrons,  o = v 1 /E c = 1.53E9(300) /1.01(300) 1.55 = 1504 cm 2 /V-s, the low-field mobility The maximum velocity (300K) is v sat =  o E c = v 1 = 1.53E9 (300) = 1.07E7 cm/s

©rlc L07-07Feb20119 Diffusion of carriers In a gradient of electrons or holes,  p and  n are not zero Diffusion current,  J =  J p +  J n (note D p and D n are diffusion coefficients)

©rlc L07-07Feb Diffusion of carriers (cont.) Note (  p) x has the magnitude of dp/dx and points in the direction of increasing p (uphill) The diffusion current points in the direction of decreasing p or n (downhill) and hence the - sign in the definition of  J p and the + sign in the definition of  J n

©rlc L07-07Feb Diffusion of Carriers (cont.)

©rlc L07-07Feb Current density components

©rlc L07-07Feb Total current density

©rlc L07-07Feb Doping gradient induced E-field If N = N d -N a = N(x), then so is E f -E fi Define  = (E f -E fi )/q = (kT/q)ln(n o /n i ) For equilibrium, E fi = constant, but for dN/dx not equal to zero, E x = -d  /dx =- [d(E f -E fi )/dx](kT/q) = -(kT/q) d[ln(n o /n i )]/dx = -(kT/q) (1/n o )[dn o /dx] = -(kT/q) (1/N)[dN/dx], N > 0

©rlc L07-07Feb Induced E-field (continued) Let V t = kT/q, then since n o p o = n i 2 gives n o /n i = n i /p o E x = - V t d[ln(n o /n i )]/dx = - V t d[ln(n i /p o )]/dx = - V t d[ln(n i /|N|)]/dx, N = -N a < 0 E x = - V t (-1/p o )dp o /dx = V t (1/p o )dp o /dx = V t (1/N a )dN a /dx

©rlc L07-07Feb The Einstein relationship For E x = - V t (1/n o )dn o /dx, and J n,x = nq  n E x + qD n (dn/dx) = 0 This requires that nq  n [V t (1/n)dn/dx] = qD n (dn/dx) Which is satisfied if

©rlc L07-07Feb Direct carrier gen/recomb gen rec EvEv EcEc EfEf E fi E k EcEc EvEv (Excitation can be by light)

©rlc L07-07Feb Direct gen/rec of excess carriers Generation rates, G n0 = G p0 Recombination rates, R n0 = R p0 In equilibrium: G n0 = G p0 = R n0 = R p0 In non-equilibrium condition: n = n o +  n and p = p o +  p, where n o p o =n i 2 and for  n and  p > 0, the recombination rates increase to R’ n and R’ p

©rlc L07-07Feb Direct rec for low-level injection Define low-level injection as  n =  p < n o, for n-type, and  n =  p < p o, for p-type The recombination rates then are R’ n = R’ p =  n(t)/  n0, for p-type, and R’ n = R’ p =  p(t)/  p0, for n-type Where  n0 and  p0 are the minority- carrier lifetimes

©rlc L07-07Feb Shockley-Read- Hall Recomb EvEv EcEc EfEf E fi E k EcEc EvEv ETET Indirect, like Si, so intermediate state

©rlc L07-07Feb S-R-H trap characteristics 1 The Shockley-Read-Hall Theory requires an intermediate “trap” site in order to conserve both E and p If trap neutral when orbited (filled) by an excess electron - “donor-like” Gives up electron with energy E c - E T “Donor-like” trap which has given up the extra electron is +q and “empty”

©rlc L07-07Feb S-R-H trap char. (cont.) If trap neutral when orbited (filled) by an excess hole - “acceptor-like” Gives up hole with energy E T - E v “Acceptor-like” trap which has given up the extra hole is -q and “empty” Balance of 4 processes of electron capture/emission and hole capture/ emission gives the recomb rates

©rlc L07-07Feb References *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, Physics of Semiconductor Devices, Shur, Prentice- Hall, 1990.