研究生:林易德 指導教授 : 龔應時 學號: MA320110 Simulink/ModelSim Co-Simulation of Sensorless PMSM Speed Controller 1.

Slides:



Advertisements
Similar presentations
EPE-PEMC th International Conference EPE-PEMC 2006 Portorož Torque Ripple Reduction by Means of a Duty- ratio Controller in a DTC-PMSM Drive Xavier.
Advertisements

Student: Cheng-Yi Chiang Adviser: Ming-Shyan Wang Date : 31th-Dec-2008
9.11. FLUX OBSERVERS FOR DIRECT VECTOR CONTROL WITH MOTION SENSORS
Hybrid Terminal Sliding-Mode Observer Design Method for a Permanent-Magnet Synchronous Motor Control System 教授 : 王明賢 學生 : 胡育嘉 IEEE TRANSACTIONS ON INDUSTRIAL.
Model of Permanent Magnet Synchronous Motor
Department of Electrical Engineering Southern Taiwan University Robot and Servo Drive Lab. 2015/5/19 Reduction of Torque Ripple Due to Demagnetization.
Application of Learning Methodologies in Control of Power Electronics Drives J. L. da Silva Neto, L.G. Rolim, W. I. Suemitsu, L. O. A. P. Henriques, P.J.
指導教授:龔應時 研究生:曾琮峻 學號:MA320107
SOUTHERN TAIWAN UNIVERSITY Department of Electrical Engineering DESIGN OF FUZZY PID CONTROLLER FOR BRUSHLESS DC (BLDC)MOTOR Student: Dang Thanh Trung Subject:
Fuzzy Adaptive Internal Model Control Schemes for PMSM Speed-Regulation System Shihua Li; Hao Gu Industrial Informatics, IEEE Transactions on Volume: 8,
1 PSO-based Motion Fuzzy Controller Design for Mobile Robots Master : Juing-Shian Chiou Student : Yu-Chia Hu( 胡育嘉 ) PPT : 100% 製作 International Journal.
Dodds, J., Stephen*, Vittek, Ján**
Department of Electrical Engineering Southern Taiwan University Robot and Servo Drive Lab. 2015/9/9 A Novel Four-Level Converter and Instantaneous Switching.
Student: Tai-Rong Lai Professor: Ming-Shyan Wang
A Shaft Sensorless Control for PMSM Using Direct Neural Network Adaptive Observer Authors: Guo Qingding Luo Ruifu Wang Limei IEEE IECON 22 nd International.
A Position Detection Strategy for Sensorless Surface Mounted Permanent Magnet Motors at Low Speed Using Transient Finite-Element Analysis Zhao Wang, Shuangxia.
Student: Dueh-Ching Lin Adviser: Ming-Shyan Wang Date : 20th-Dec-2009
Department of Electrical Engineering Southern Taiwan University Robot and Servo Drive Lab. 2015/9/18 Pulsewidth Modulation Technique for BLDCM Drives to.
T ORQUE R IPPLE M INIMIZATION IN D IRECT T ORQUE C ONTROL OF B RUSHLESS DC M OTOR 指導老師:龔應時 老師 學 生:黃品翰 日 期: 2014/11/12 Zhenguo Li†, Songfa Zhang*, Shenghai.
Sensorless Control of the BLDC Motors From Near-Zero to High Speeds
1 An FPGA-Based Novel Digital PWM Control Scheme for BLDC Motor Drives 學生 : 林哲偉 學號 :M 指導教授 : 龔應時 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL.
Department of Electrical Engineering, Southern Taiwan University Practical sensorless control for inverter-fed BDCM compressors Student: Chien-Chih Huang.
Shihua Li; Hao Gu Industrial Informatics, IEEE Transactions on Volume: 8, Issue: 4 Digital Object Identifier: /TII Publication Year:
學生 : 林易德 學號 :MA 指導教授 : 龔應時 NEW SLIDING-MODE OBSERVER FOR POSITION SENSORLESS CONTROL OF PERMANENT-MAGNET SYNCHRONOUS MOTOR.
SIMULINK/MODELSIM CO-SIMULATION OF FPGA-BASED PI SPEED CONTROL FOR PMSM DRIVE STUDENT: PHAM VAN DUNG ID: MA02B205 ELECTRICAL ENGINEERING DEPARTMENT SOUTHERN.
Southern Taiwan University of Science and Technology
IV. Implementation system by Hardware Fig.3 Experimental system.
Sensorless Sliding-Mode Control of Induction Motors Using Operating Condition Dependent Models 教 授: 王明賢 學 生: 謝男暉 南台科大電機系.
1 Simulation of DTC Strategy in VHDL Code for Induction Motor Control IEEE ISIE 2006, July 9-12, 2006, Montreal, Quebec, Canada 指導教授: 龔應時 學 生: 顏志男 Marcelo.
Department of Electrical Engineering Southern Taiwan University of Science and Technology Robot and Servo Drive Lab. 2015/10/27 DSP-Based Control of Sensorless.
Motion control 主題 : Observer-Based Speed Tracking Control for Sensorless Permanent Magnet Synchronous Motors With Unknown Load Torque 作者 : Patrizio Tomei.
Department of Electrical Engineering, Southern Taiwan University 1 A novel sensorless control method for brushless DC motor Student: Wei-Ting Yeh Adviser:
A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM Hongryel Kim, Jubum Son, and Jangmyung Lee, Senior Member, IEEEIEEE TRANSACTIONS.
Performance investigation of modified hysteresis current controller with the permanent magnet synchronous motor drive A.N. Tiwari1 P. Agarwal2 S.P. Srivastava2;
Sensorless Control of the Permanent Magnet Synchronous Motor Using Neural Networks 1,2Department of Electrical and Electronic Engineering, Fırat University.
Twelve-Step_Sensorless_Drive_Scheme_for_a_Brushless_DC_Motor 南台科技大學電機工程系 來源 : Chao-Min Wang; Shyh-Jier Wang; Shir-Kuan Lin; Hsing-Yu Lin; A Novel Twelve-Step.
Student: Hsin-Feng Tu Professor: Ming-Shyan Wang Date : Dec,29,2010
Department of Electrical Engineering Southern Taiwan University of Science and Technology Robot and Servo Drive Lab. 2015/12/6 Professor : Ming-Shyan Wang.
Fuzzy sliding mode controller for DC motor Advisor : Ying Shieh Kung Student: Bui Thi Hai Linh Southern Taiwan University Seminar class
A System-on-Chip Sensorless Control for a Permanent-Magnet Synchronous Motor Adviser : Ming-Shyan Wang Student :Yu-Ming Liao IEEE TRANSACTIONS ON INDUSTRIAL.
IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 10, OCTOBER Optimal Commutation of a BLDC Motor by Utilizing the Symmetric Terminal Voltage G. H. Jang.
SLIDING MODE BASED OUTER CONTROL LOOP FOR INDUCTION MOTOR DRIVES WITH FORCED DYNAMICS.
Design and Implementation of a High-Performance PMLSM Drives Using DSP Chip Student : Le Thi Van Anh Advisor : Ying-Shieh Kung IEEE TRANSACTIONS ON INDUSTRIAL.
Department of Electrical Engineering Southern Taiwan University Robot and Servo Drive Lab. 2015/12/23 Torque Ripple Reduction in BLDC Torque Motor With.
Permanent Magnet Synchronous Motor Drive Using Hybrid PI Speed Controller With Inherent and Noninherent Switching Functions Amit Vilas Sant, K. R. Rajagopal,
A T ORQUE R IPPLE C OMPENSATION T ECHNIQUE FOR A L OW -C OST B RUSHLESS DC M OTOR D RIVE H. K. Samitha Ransara and Udaya K. Madawala, Senior Member, IEEE.
Department of Electrical Engineering Southern Taiwan University of Science and Technology Robot and Servo Drive Lab. 學生 : 蔡景棠 指導教授 : 王明賢 2016/1/17 Compensation.
An Energy-Efficient Motor Drive With Autonomous Power Regenerative Control SystemBased on Cascaded Multilevel Inverters and Segmented Energy Storage 研究生.
Professor : Ming – Shyan Wang Department of Electrical Engineering Southern Taiwan University Thesis progress report Sensorless Operation of PMSM Using.
Page 1 國立交通大學電力電子晶片設計與 DSP 控制實驗室 Power Electronics IC Design & DSP Control Lab., NCTU, Taiwan 年 10 月 13 日 賴 逸 軒賴 逸.
Student: yi-sin Tang Adviser: Ming-Shyan Wang Date :
Disturbance rejection control method
DSP BASED SPEED CONTROL OF THE SURFACE MOUNTED PERMANENT MAGNET SYNCHRONOUS MOTOR USING SPACE VECTOR MODULATION 作者:BASIM ALSAYID, ABDEL-KARIM DAUD and.
Department of Electrical Engineering Southern Taiwan University Robust Nonlinear Speed Control of PM Synchronous Motor Using Boundary Layer Integral Sliding.
Department of Electrical Engineering Southern Taiwan University of Science and Technology Robot and Servo Drive Lab. 2016/2/21 A Novel Rotor Configuration.
Student: Chien-Chih Huang Teacher: Ming-Shyan Wang Date :
Department of Electrical Engineering Southern Taiwan University NEW Initial Position Detection Technique for Three-Phase Brushless DC Motor without Position.
Department of Electrical Engineering Southern Taiwan University Industry Application of Zero-Speed Sensorless Control Techniques for PM Synchronous Motors.
A Novel Universal Sensor Concept for Survivable PMSM Drives Yao Da, Student Member, IEEE, Xiaodong Shi, Member, IEEE, and Mahesh Krishnamurthy, Senior.
Department of Electrical Engineering, Southern Taiwan University Initial Rotor Position Estimation for Sensorless Brushless DC Drives Student: G-E Lin.
Professor Mukhtar ahmad Senior Member IEEE Aligarh Muslim University
Han Ho Choi, Member, IEEE, Nga Thi-Tuy Vu, and Jin-Woo Jung IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 8, AUGUST 2012,pp /9/241.
An FPGA Implementation of a Brushless DC Motor Speed Controller
Adviser: Ming-Shyan Wang Student: Feng-Chi Lin
Improved Speed Estimation in Sensorless PM Brushless AC Drives
Real-Time Performance Evaluation of a Genetic-Algorithm-Based Fuzzy Logic Controller for IPM Motor Drives Presented by, K.Aishwarya S.Meenakshi M.Surya.
FPGA DESIGN APPROACH OF DIGITAL CONTROL OF THREE-PHASE INDUCTION MOTOR
Professor: Ming-Shyan Wang Student: CIH-HUEI SHIH
Objective: The main aim of this project is to control the speed of the brush less direct current motor based on the single current sensor is proposed.
Dynamical Operation, Vector Control, DTC and Encoder-less Operation
Presentation transcript:

研究生:林易德 指導教授 : 龔應時 學號: MA Simulink/ModelSim Co-Simulation of Sensorless PMSM Speed Controller 1

Abstract Based on Simulink/Modelsim co-simulation technology, the design of a sensorless control IP (Intellectual Property) for PMSM (Permanent Magnet Synchronous Motor) drive is presented in this paper. Firstly, a mathematical model for PMSM is derived and the vector control is adopted. Secondly, a rotor flux position is estimated by using a sliding mode observer (SMO). These estimated values are feed-backed to the current loop for vector control and to the speed loop for speed control. Thirdly, the Very-High-Speed IC Hardware Description Language (VHDL) is adopted to describe the behavior of the sensorless speed control IP which includes the circuits of space vector pulse width modulation (SVPWM), coordinate transformation, SMO, fuzzy controller, etc. Fourthly, the simulation work is performed by MATLAB/Simulink and ModelSim co- simulation mode, provided by Electronic Design Automation (EDA) Simulator Link. The PMSM, inverter and speed command are performed in Simulink and the sensorless speed control IP of PMSM drive is executed in ModelSim. Finally, the co-simulation results validate the effectiveness of the sensorless PMSM speed control system. 2

Introduction However, conventional motor control needs a speed sensor or an optical encoder to measure the rotor speed and feedback it to the controller for ensuring the precision speed control. Such sensor presents some disadvantages such as drive cost, machine size, reliability and noise immunity. 3

FPGA FPGA can provide another alternative solution in this issue. Especially, FPGA with programmable hard-wired feature, fast computation ability, shorter design cycle, embedding processor, low power consumption and higher density is better for the the digital system than DSP. 4

SYSTEM DESCRIPTION OF PMSM DRIVE AND SENSORLESS SPEED CONTROLLER DESIGN 5

The current loop control of PMSM drive in is based on a vector control approach. That is, if the id is controlled to 0 in Fig.1, the PMSM will be decoupled and controlling a PMSM like to control a DC motor. 6

7

Design of the rotor flux position estimation 8

Sliding mode observer 9

10

a summary for estimating the rotor position is shown by the following design procedures:

Fuzzy controller 12

13

14

SIMULATION RESULTS 15

16

17

250RPM 5000RPM 1000RPM 2000RPM 藍色 = 實際 紅色 = 估算 18

19

CONCLUSIONS This study has been presented a sensorless speed control IP for PMSM drive and successfully demonstrated its performance through co-simulation by using Simulink and ModelSim. After confirming the effective of VHDL code of sensorless speed control IP, we will realize this code in the experimental FPGA-based PMSM drive system for further verifying its function in the future work. 20

REFERENCE [1] V.C. Ilioudis and N.I. Margaris, “PMSM Sensorless Speed Estimation Based on Sliding Mode Observers,” in Proceedings of Power Electronics Specialists Conference (PESC), pp.2838~2843, [2] W. Lu and Y. Hu and W. Huang and J. Chu and X. Du and J. Yang,“Sensorless Control Of Permanent Magnet Synchronous Machine Based on A Novel Sliding Mode Observer,” in Proceedings of Power Electronics and Applications Conference, pp.1~4, [3] M. Ezzat and J.d. Leon and N. Gonzalez and A. Glumineau, “Sensorless Speed Control of Permanent Magnet Synchronous Motor by using Sliding Mode Observer,” in Proceedings of th International Workshop on Variable Structure Systems, pp.227~232, June , [4] S. Chi and Z. Zhang and L. Xu, “Sliding-Mode Sensorless Control of Direct-Drive PM Synchronous Motors for Washing Machine Applications,” IEEE Trans. on Indus. Applica., vol. 45, no. 2, pp.582~590,Mar./Apr [5] D. Jiang and Z. Zhao and F. Wang, “A Sliding Mode Observer for PMSM Speed and Rotor Position Considering Saliency,” in Proceedings of IEEE Power Electronics Specialists Conference (PESC), pp.809~814,

[6] P. Borsje, and T.F Chan,. and Y.K. Wong, and S.L. Ho, “A Comparative Study of Kalman Filtering for Sensorless Control of a Permanent- Magnet Synchronous Motor Drive,” in Proceedings of IEEE International Conference on Electric Machines and Drives, pp.815~822, [7] H.A.F. Mohamed and S. S. Yang and M. Moghavvemi, “Sensorless Fuzzy SMC for a Permanent Magnet Synchronous Motor,” in Proceedings of ICROS-SICE International Joint Conference 2009, pp.619~623. [8] Z.Zhou, T. Li, T. Takahahi and E. Ho, “FPGA realization of a highperformance servo controller for PMSM,” in Proceeding of the 9th IEEE Application Power Electronics conference and Exposition, 2004, vol.3, pp [9] Y.S. Kung and M.H. Tsai, “FPGA-based speed control IC for PMSM drive with adaptive fuzzy control,” IEEE Trans. on Power Electronics, vol. 22, no. 6, pp , Nov [10] E. Monmasson and M. N. Cirstea, “FPGA design methodology for industrial control systems – a review” IEEE Trans. Ind. Electron., vol. 54, no.4, pp , Aug [11] M. F. Castoldi, G. R. C. Dias, M. L. Aguiar and V. O. Roda, “Chopper- Controlled PMDC motor drive using VHDL code,” in Proceedings of the 5th Southern Conference on Programmable Logic, pp. 209~212, [12] M. F. Castoldi and M. L. Aguiar, “Simulation of DTC strategy in VHDL code for induction motor control,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), pp ,

Thank you for your attention. 23