Presentation is loading. Please wait.

Presentation is loading. Please wait.

A System-on-Chip Sensorless Control for a Permanent-Magnet Synchronous Motor Adviser : Ming-Shyan Wang Student :Yu-Ming Liao IEEE TRANSACTIONS ON INDUSTRIAL.

Similar presentations


Presentation on theme: "A System-on-Chip Sensorless Control for a Permanent-Magnet Synchronous Motor Adviser : Ming-Shyan Wang Student :Yu-Ming Liao IEEE TRANSACTIONS ON INDUSTRIAL."— Presentation transcript:

1 A System-on-Chip Sensorless Control for a Permanent-Magnet Synchronous Motor Adviser : Ming-Shyan Wang Student :Yu-Ming Liao IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 11,p.3822~3829,NOVEMBER 2010 Vincenzo Delli Colli, Roberto Di Stefano, Fabrizio Marignetti

2 Outline Abstract Introduction Control algorithm Position and speed observer Altera-PC-based design flow and implementation HIL results Experimental setup and results Conclusion References

3 Abstract This paper investigates a system-on-programmable-chip permanent-magnet synchronous-motor drive speed and position sensorless control. The proposed approach exploits two field-programmable gate- array capabilities, namely, the fast computation and the hosting of long finite-impulse response filters. This paper presents the design flow and confirms the feasibility of the approach by means of hardware-in-the-loop simulations and experimental tests.

4 References(1/5) [1] P. P. Acarnley and J. F. Watson, “Review of position-sensorless operation of brushless permanent-magnet machines,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 352–362, Apr. 2006. [2] P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient ac machines,” IEEE Trans. Ind. Electron., vol. 31, no. 2, pp. 240–247, Mar./Apr. 1995. [3] F. Briz, M. W. Degner, A. Diez, and R. D. Lorenz, “Measuring, modeling, and decoupling of saturation-induced saliencies in carrier-signal injection-based sensorless ac drives,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1356–1364, Sep./Oct. 2001. [4] C. Silva, G. M. Asher, and M. Sumner, “Hybrid rotor position observer for wide speed-range sensorless PM motor drives including zero speed,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 373–378, Apr. 2006. [5] S. Shinnaka, “A new current-ratio-oriented simple vector control method for starting up sensorless drive of permanent-magnet synchronous motors,” in Conf. Rec. IEEE IAS Annu. Meeting, Oct. 8–12, 2006, vol. 4, pp. 2054–2061. [6] M. Jansson, L. Harnefors, O.Wallmark, andM. Leksell, “Synchronization at startup and stable rotation reversal of sensorless nonsalient PMSM drives,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 379–387, Apr. 2006. [7] J.-K. Seok, J.-K. Lee, and D.-C. Lee, “Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-positiontracking PI controller,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 399– 405, Apr. 2006.

5 References(2/5) [8] J. Holtz, “Initial rotor polarity detection and sensorless control of PM synchronous machines,” in Conf. Rec. IEEE IAS Annu. Meeting, Oct. 8–12, 2006, vol. 4, pp. 2040–2047. [9] L. A. de S Ribeiro, M. C. Harke, and R. D. Lorenz, “Dynamic properties of back-EMF based sensorless drives,” in Conf. Rec. IEEE IAS Annu. Meeting, Oct. 8–12, 2006, vol. 4, pp. 2026–2033. [10] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems. New York: Taylor & Francis, 1999. [11] M. Elbuluk and L. Changsheng, “Sliding mode observer for wide-speed sensorless control of PMSM drives,” in Conf. Rec. 38th IEEE IAS Annu. Meeting, Oct. 12–16, 2003, vol. 1, pp. 480–485. [12] S. Bolognani, L. Tubiana, and M. Zigliotto, “Extended Kalman filter tuning in sensorless PMSM drives,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1741–1747, Nov./Dec. 2003. [13] Y.-S. Han, J.-S. Choi, and Y.-S. Kim, “Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimator,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3588– 3591, Sep. 2000. [14] P. Paiz, “The utilization of reconfigurable hardware to implement digital controllers: A review,” in Proc. IEEE Int. Symp. Ind. Electron., Jun. 4–7, 2007, pp. 2380–2385. [15] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features, design tools, and application domains of FPGAs,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1810–1823, Aug. 2007.

6 References(3/5) [16] M.-W. Naouar, E. Monmasson, A. A. Naassani, I. Slama-Belkhodja, and N. Patin, “FPGA- based current controllers for AC machine drives—A review,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1907–1925, Aug. 2007. [17] E. Monmasson and M. N. Cirstea, “FPGA design methodology for industrial control systems— A review,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1824–1842, Aug. 2007. [18] C.-H. Fang, W.-N. Huang, C.-H. Chen, J.-K. Chen, and H.-Y. Chang, “New design concept of an FPGA-based chip with considerations of flexible functions applying sliding mode control strategy for permanent magnet synchronous motor drives,” in Proc. APEC, Mar. 6–10, 2005, vol. 3, pp. 1903–1908. [19] L.-S. Xuefang, F. Morel, A. M. Llor, B. Allard, and J.-M. Retif, “Implementation of hybrid control for motor drives,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1946–1952, Aug. 2007. [20] K. Jezernik, A. Kapun, andM. Curkovic, “Robust speed sensorless control of PMSM,” in Proc. IEEE Int. Symp. Ind. Electron., Jun. 30–Jul. 2, 2008, pp. 520–525. [21] L. Idkhajine, A. Prata, E. Monmasson, K. Bouallaga, and M.-W. Naouar, “System on chip controller for electrical actuator,” in Proc. IEEE Int. Symp. Ind. Electron., Jun. 30–Jul. 2, 2008, pp. 2481–2486. [22] C. Dufour, V. Lapointe, J. Belanger, and S. Abourida, “Hardware-in-theloop closed-loop experiments with an FPGA-based permanent magnet synchronous motor drive system and a rapidly prototyped controller,” in Proc. IEEE Int. Symp. Ind. Electron., Jun. 30–Jul. 2, 2008, pp. 2152– 2158.

7 References(4/5) [23] C. Dufour, H. Blanchette, and J. Belanger, “Very-high speed control of an FPGA-based finite- element-analysis permanent magnet synchronous virtual motor drive system,” in Proc. 34th IEEE IECON, Nov. 10–13, 2008, pp. 2411–2416. [24] K. Jezernik and M. Rodic, “High precision motion control of servo drives,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3810–3816, Oct. 2009. [25] M. N. Cirstea and A. Dinu, “A VHDL holistic modeling approach and FPGA implementation of a digital sensorless induction motor control scheme,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1853–1864, Aug. 2007. [26] A.-M. Lienhardt, G. Gateau, and T. A. Meynard, “Digital sliding-mode observer implementation using FPGA,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1865–1875, Aug. 2007. [27] Y. F. Chan, M. Moallem, and W. Wang, “Design and Implementation of modular FPGA-based PID controllers,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1898–1906, Aug. 2007. [28] D. Jiang, Z. Zhao, and F. Wang, “A sliding mode observer for PMSM speed and rotor position considering saliency,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 15–19, 2008, pp. 809–814. [29] V. D. Colli, R. Di Stefano, F. Marignetti, and M. Scarano, “Design of a system-on-chip PMSM drive sensorless control,” in Proc. IEEE Int. Symp. Ind. Electron., Jun. 4–7, 2007, pp. 2386–2391.

8 References(5/5) [30] “MegaCore—FIR Compiler User Guide”, ALTERA, San Jose, CA, 2006. [31] A. Sathyan, N. Milivojevic, Y.-J. Lee, M. Krishnamurthy, and A. Emadi, “An FPGA-based novel digital PWM control scheme for BLDC motor drives,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3040–3049, Aug. 2009. [32] L. Idkhajine, E. Monmasson, M. W. Naouar, A. Prata, and K. Bouallaga, “Fully integrated FPGA-based controller for synchronous motor drive,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4006–4017, Oct. 2009.

9 Thanks for listening!!!


Download ppt "A System-on-Chip Sensorless Control for a Permanent-Magnet Synchronous Motor Adviser : Ming-Shyan Wang Student :Yu-Ming Liao IEEE TRANSACTIONS ON INDUSTRIAL."

Similar presentations


Ads by Google