2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.

Slides:



Advertisements
Similar presentations
Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen.
Advertisements

TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
P hysics background for luminosity calorimeter at ILC I. Božović-Jelisavčić 1, V. Borka 1, W. Lohmann 2, H. Nowak 2 1 INN VINČA, Belgrade 2 DESY, Hamburg.
L. Suszycki, Tel Aviv, Sept, 2005 LumiCal background studies Contents: Guinea Pig results Vermasseren results Remarks on energy reconstruction Conclusions.
Luminosity and beam calorimeter report E. Kouznetsova, DESY.
Beamdiagnostics by Beamstrahlung Analysis C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
Radiation Hard Sensors for the Beam Calorimeter of the ILC C. Grah 1, R. Heller 1, H. Henschel 1, W. Lange 1, W. Lohmann 1, M. Ohlerich 1,3, R. Schmidt.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Krakow2006.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle LCWS 2004 Paris April 19 th 2004.
Octobre MPI Munich FCAL Workshop in Munich W. Lohmann, DESY The 14 mrad X-angle, two IPs The push-pull option The next calendar dates Where we are.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
Calorimeter technologies for forward region instrumentation K. Afanaciev 2, R. Dollan 1 V. Drugakov 2, C. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
CVD Diamond Sensor Studies for the Beam Calorimeter of the ILC Detector K. Afanaciev 2, I.Emelianchik 2, Ch. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
July 2006ALCWS Vancouver Very Forward Instrumentation of the Linear Collider Detector On behalf of the Wolfgang Lohmann, DESY.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
February 13. FCAL Workshop in Cracow W. Lohmann, DESY Bunch charge effects and diff. Bhabha cross section News From Theory and Generator Diamond.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
ILC-ECFA Workshop Valencia November 2006 Four-fermion processes as a background in the ILC luminosity calorimeter for the FCAL Collaboration I. Božović-Jelisavčić,
December 4, 2015KILC2012 Daegu Labs involved: Argonne, Vinca Inst, Belgrade, Bukharest IFIN-HH & ISS, CERN, Univ. of Colorado, Cracow AGH-UST, Cracow IFJ-PAN,
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
Jan. 17, 2005JINR Dubna BMBF Detector R&D for the ILC W. Lohmann, DESY e + e - Collider 500 GeV – 1 TeV Fixed and tunable CMS energy Clean Events Beam.
Optimization of the Design of the Forward Calorimeters ECFA LC Workshop Montpellier, 15 November 2003 *FC Collaboration: Colorado, Cracow, DESY(Zeuthen),
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
A Luminosity Detector for the Future Linear Collider Ronen Ingbir Prague Workshop HEP Tel Aviv University.
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
December 7, 2005DESY EUDET in FCAL VINCA, Belgrade Univ. of Colorado, Boulder, BNL, Brookhaven, AGH Univ., INP & Jagiell. Univ. Cracow, JINR, Dubna, NCPHEP,
August DESY-HH VFCAL Report W. Lohmann, DESY Infrastructure for sensor diagnostics FE Electronics Development Sensor test facilities Laser Alignment.
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
16 February 2009CLIC Physics & Detectors Konrad Elsener 1... some issues regarding the forward region... (“picking up” from Lucie Linssen, 29 Sept 2008)
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
February 29, 2016LCWS Arlington Labs involved: Argonne, Vinca Inst, Belgrade, Bukharest IFIN-HH & ISS, CERN, Univ. of Colorado, Cracow AGH-UST & IFJ-PAN,
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
Mokka simulation studies on the Very Forward Detector components at CLIC and ILC Eliza TEODORESCU (IFIN-HH) FCAL Collaboration Meeting Tel Aviv, October.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell. Univ. Cracow,
Summary of the FCAL Workshop Cracow, February 12-13
The very forward region Tel-Aviv meeting summary
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Testbeam plans for LEP instrumentation
Wolfgang Lohmann DESY (Zeuthen)
Report about “Forward Instrumentation” Issues
LAT performance studies
Luminosity and beam calorimeter report E. Kouznetsova, DESY
Presentation transcript:

2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast and precise Luminosity measuremt - Shielding of the inner detectors -

November 2005LDC meeting 20mrad DID Shielding function 20mrad solenoid Due to the small bunch size  x ~100nm,  y ~5 nm and the large bunch charge, N x /bunch, beamstrahlung becomes important lots of e+e- pairs

Current design IP VTX FTD 300 cm L* = 4m Bhabha Scattering LumiCal 26 <  < 82 mrad Beampipe Head-on or small X-angle BeamCal 4 <  < 28 mrad PhotoCal downstream (100 <  < 400  rad

Precise Luminosity Measurement, LumiCal Goal: <10 -3 Precision Gauge Process: Technology: Si-W Sandwich Calorimeter MC Simulations e + e - e + e - (  ) Optimisation of Shape and Segmentation, Key Requirements on the Design Physics Case: Giga-Z, Two Fermion Cross Sections at High Energy, e + e - W + W -

Inner Radius of Cal.: < 4 μm Distance between Cals.: < 100 μm Radial beam position: < 0.6 mm Requirements on Alignment and mechanical Precision (MC simulations, BHLUMI) LumiCal IP Requirements on the Mechanical Design < 4 μm  < 0.6 mm

Mechanical frame: Decouple sensor support from absorber support structure Sensor carriers Absorber carriers Technology Si/W sandwich calorimeter, simulations at advanced level. No hardware devolepment up to now.

Comparison head-on, 2, 20 mrad Centered around the outgoing beam Centered around the detector axis Radial beam shift: 400  m For a 20 mrad design LumiCal MUST be centered around the outgoing beam-pipe!

 Constant value value of the constant 0.11e-3 rad 0.13e-3 rad  30 layers 15 rings 20 rings 10 rings  4 layers 15 layers 11 layers 10 rings Performance Simulations for e + e - e + e - (  ) Event selection: acceptance, energy balance, azimuthal and angular symmetry. Simulation: Bhwide(Bhabha)+CIRCE(Beamstrahlung)+beamspread More in the talks by Halina Abramowicz

Beamstrahlung pair background using serpentine field 250 GeV Number of Bhabha events as a function of the inner Radius of LumiCal Background from beamstrahlung Background in the LumiCal : (500 GeV, TDR) Zero or small X-angle: negligible 20 mrad X-angle: 3-5 TeV background

15000 e + e - per BX 10 – 20 TeV (10 MGy per year) e + e - Pairs from Beamstrahlung are deflected into the BeamCal GeV Zero (or 2 mrad) crossing angle 20 mrad Crossing angle BeamCal Background in the BeamCal : (500 Gev, TDR) Zero or small X-angle: 30 TeV/BX 20 mrad X-angle: 60 TeV/BX Radiation hard sensors needed

Detection of High Energy Electrons and Photons (Detector Hermeticity) √s = 500 GeV Single Electrons of 50, 100 and 250 GeV, detection efficiency as a function of R ( ‘ high background region ’ ) Detection efficiency as a function of the pad-size Message: Electrons can be detected! Red – high BG blue – low BG

Quantity Nominal Value Precision xx 553 nm4.8nm yy 5.0 nm0.1 nm zz 300  m11.5  m yy 02.0nm Beam Parameter Determination with BeamCal PRELIMINARY! 20 mrad crossing angle total energy first radial moment angular spread L/R, U/D F/B asymmetries Also simultaneous determination of several beam parameter is feasible, but: Correlations! Analysis in preparation Observables Fast Lumi estimate and feedback for beam steering

nominal setting (550 nm x 5 nm)  >100m IP L/R, U/D F/B asymmetries of energy in the angular tails Quantity Nominal Value Precision xx 553 nm4.2 nm zz 300  m7.5  m yy 00.2 nm Heavy gas ionisation Calorimeter and with PhotoCal Photons from Beamstrahlung

Heavy crystals W-Diamond sandwich sensor Space for electronics Technologies for the BeamCal: Radiation Hard Fast Compact

Sensor prototyping, Crystals Light Yield from direct coupling Similar results for lead glass Crystals (Cerenkov light !) and using a fibre ~ 15 % Compared with GEANT4 Simulation, good agreement

Sensor prototyping, Diamonds  ADC Diamond (+ PA) Scint.+PMT& signal gate May,August/2004 test beams CERN PS Hadron beam – 3,5 GeV 2 operation modes: Slow extraction ~ / s fast extraction ~ / ~10ns (Wide range intensities) Diamond samples (CVD): - Freiburg - GPI (Moscow) - Element6 Pm1&2 Pads

Linearity Studies with High Intensities (PS fast beam extraction) 10 5 particles/10 ns Response to mip Diamond Sensor Performance Particle flux, N/cm 2 /10ns

Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell. Univ. Cracow, JINR, Dubna, NCPHEP, Minsk, FZU, Prague, IHEP, Protvino, TAU, Tel Aviv, DESY, Zeuthen look to our web-page: http// desy.de/LC/FCAL We would be happy to welcome you to fight together!

Summary Many (and promising) results in simulations/design studies Concept for a Luminometer for small crossing angle is advanced, 20 mrad needs a different design – work to be done compact and fine segmented calorimeters necessary, needs R&D Prototype tests mandatory Remark: The instrumentation of the forward region is relatively independent of the detector concept, Mechanics design just started, needs effort radiation hard sensors for the inner calorimeter – needs R&D no electronics concept so far