Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Creating new states of matter:
Classical and Quantum Gases
Femtosecond lasers István Robel
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Bose-Einstein Condensation Ultracold Quantum Coherent Gases.
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Bose-Einstein Condensation and Superfluidity Gordon Baym University of Illinois, Urbana January 2004 東京大学.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Bose-Fermi Degeneracy in a Micro-Magnetic Trap Seth A. M. Aubin University of Toronto / Thywissen Group February 25, 2006 CIAR Ultra-cold Matter Workshop,
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Ultra-Cold Matter Technology Physics and Applications Seth A. M. Aubin University of Toronto, Canada June 15, 2006 NRC, Ottawa.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Progress on Light Scattering From Degenerate Fermions Seth A. M. Aubin University of Toronto / Thywissen Group May 20, 2006 DAMOP 2006 Work supported by.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
1 Bose-Einstein Condensation PHYS 4315 R. S. Rubins, Fall 2009.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Bright and Gap Solitons and Vortex Formation in a Superfluid Boson-Fermion Mixture Sadhan K. Adhikari Institute of Theoretical Physics UNESP – São Paulo.
Current “Hot” Areas of Research in Physics. Mature Physics and Hot Physics.
Experiments with ultracold atomic gases
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Quantum Physics & Ultra-Cold Matter Seth A. M. Aubin Dept. of Physics College of William and Mary December 16, 2009 Washington, DC.
Spin-statistics theorem As we discussed in P301, all sub-atomic particles with which we have experience have an internal degree of freedom known as intrinsic.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
B.E.C.(Bose-Einstein Condensation) 발표자 : 이수룡 (98).
Superfluidity in atomic Fermi gases Luciano Viverit University of Milan and CRS-BEC INFM Trento CRS-BEC inauguration meeting and Celebration of Lev Pitaevskii’s.
„Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Klaus Sengstock Krynica, June 2005 Quantum Optics.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Bose-Einstein Condensates The Coldest Stuff in the Universe Hiro Miyake Splash! November 17, 2012.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
A Review of Bose-Einstein Condensates MATTHEW BOHMAN UNIVERSITY OF WASHINGTON MARCH 7,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Bose-Einstein Condensation
strongly interacting fermions: from spin mixtures to mixed species
DILUTE QUANTUM DROPLETS
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Novel quantum states in spin-orbit coupled quantum gases
Space Telescope Science Institute
Bose-Einstein Condensation and Superfluidity
Presentation transcript:

Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic White Dwarf Star

Quantum Gases Quantum regime n7 3  1 Identical particles! Gas phase n  cm -3 Low temperature T  100 nK    1  m

Exchange Symmetry Bosons Symmetry with respect to particle exchange  12 (r 1,r 2 )  +  12 (r 2,r 1 ) S. Bose, 1924 A. Einstein, Multiple state occupation

Vortices Solitons Atom laser Atom wave guides Nonlinear atom optics Superfluidty Andrews et al., Science 275, 637, (1997) Atoms Occupy Lowest Energy State of Trap 7 Li Bose-Einstein Condensation

Bose-Einstein Condensation in an Almost Ideal Gas T c =   (N/1.2) 1/3

Exchange Symmetry Fermions Symmetry with respect to particle exchange  12 (r 1,r 2 )  -  12 (r 2,r 1 ) Obey Pauli Exclusion Principle Bosons  12 (r 1,r 2 )  +  12 (r 2,r 1 ) S. Bose, 1924 A. Einstein, Multiple state occupation E. Fermi, Feb P.A.M. Dirac, Aug EFEF

E. Fermi, Rendiconti Accademia Nazionale dei Lincei (2/2/26)

P.A.M. Dirac, Proc. Roy. Soc. (8/26/26)

and it comes in 2 nuclear spin states!

Lithium: Non-identical Twins 7 Li 3 e’s, 3 p’s, 4 n’s = 10 spin-½ particles  Boson 94% abundance 6 Li 3 e’s, 3 p’s, 3 n’s = 9 spin-½ particles  Fermion 6% abundance

Fermions - The Next Frontier Quantum Degenerate Fermi Gases 40 K: Demarco and Jin, Science 285, 1703 (1999) 6 Li: Truscott et al. (Rice), Science 291, 2570 (2001) 6 Li: Schreck et al. (Paris), Phys. Rev. Lett. 87, (2001). Current status: T  0.25 T F

Methods Laser cooling T  100  K Atom trapping n  cm -3 N  10 9  10 6 Evaporative cooling T  100  K  100 nK  -wave spin-flips Optical imaging

Laser Cooling Momentum is imparted to an atom when it scatters light from a laser Can slow or stop atoms in a beam Trapped and cooled to  K temperatures

Evaporative Cooling Spin flip ‘hot’ atoms at edge of trap Collisions re-thermalize distribution colder denser E f(E) RF Remove tail Re-thermalize

Sympathetic Cooling of 6 Li Pauli principle forbids s-wave interactions between identical fermions Use both 6 Li and 7 Li 6 Li 7 Li

Dual Source Apparatus 7 Li/ 6 Li Zeeman Slower Cloverleaf Trap Require vacuum pressure ~ Torr Oven

Imaging CCD Mirror Compound lens  -scope Zoom lens r A=e - 

7 Li (Bosons) T = 240 nk T = 510 nk T = 810 nk 6 Li (Fermions) T/T F = 1.0 T/T F = 0.56 T/T F = 0.25 Truscott et al., Science 291, 2570 (2001) Sympathetic Cooling

Axial Profiles Truscott et al., Science 291, 2570 (2001)

Fermi Pressure in Trapped Atoms Truscott et al., Science 291, 2570 (2001)

Fermi Pressure Fermi pressure is result of Pauli Exclusion Principle Stabilizes white dwarf and neutron stars against gravitational collapse E F ~ n 1/3 (non-relativistic) E grav ~ n 1/3 Balance: Chandrasekar limit for white dwarf stars (1931)

Possible Experiments Boson/Fermion mixture –Phase separation –Superfluid probe Degenerate Fermi gas –BCS phase transition to a gaseous superfluid 6 Li has an enormous attractive interaction

BCS Transition in 6 Li? Cooper pairing –Superconductivity –Superfluidity 3 He –Dilute gas? – tunable interactions For s-wave pairing, T c  T F exp(-1/k F | a |) For 2 H, a = -4   T c = cm -3 –Leggett (1980) For 6 Li, a =   T c = cm -3 –Stoof (1996) Induced interactions (fermi/fermi or bose/fermi) mod. T c –Heiselberg et al. (2000)

Cooper Pairing in 6 Li S-wave pairing symmetry forbidden between identical atoms  Create incoherent mixture of two states Stoof et al., PRL 76, 10 (1996)

Detecting Cooper Pairs Light scattering sensitive to –normal component, i.e. –pair correlation fcn. + –but r F ~ (E F / ½m  2 ) ½ ~ 50  m normal component r p ~ 1 / k F ~ 0.2  m pair correlation length Experiment: Zhang, Sackett, and Hulet, PRA 60, 504 (1999) Also, Ruostekoski, PRA 60, R1775 (1999) pairs normal  << E F  no significant change in density

Detecting Superfluidity Superfluids in anisotropic traps exhibit a “scissors” mode oscillation when displaced – Guery-Odelin and Stringari (theory) – Marago et al. (expt with BEC)