PROJECT GUIDE GROUP MEMBERS Dr.B.GOPI,B.E.M.E.Ph.D P.MENAKA G.NIVEDHA M.PAVITHRA M.POORNIMA G.PRIYA 1.

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

MICROWAVE FET Microwave FET : operates in the microwave frequencies
ECA1212 Introduction to Electrical & Electronics Engineering Chapter 6: Field Effect Transistor by Muhazam Mustapha, October 2011.
Introduction to MOSFETs
1 LINLITHGOW ACADEMY PHYSICS DEPARTMENT MOSFETs 2 MOSFETS: CONTENT STATEMENTS Describe the structure of an n-channel enhancement MOSFET using the terms:
Physical structure of a n-channel device:
Metal Oxide Semiconductor Field Effect Transistors
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 28 Field-Effect Transistors.
Metal-Oxide-Semiconductor Fields Effect Transistors (MOSFETs) From Prof. J. Hopwood.
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Introduction to VLSI Circuits and Systems, NCUT 2007 Chapter 6 Electrical Characteristic of MOSFETs Introduction to VLSI Circuits and Systems 積體電路概論 賴秉樑.
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Outline Introduction – “Is there a limit?”
The metal-oxide field-effect transistor (MOSFET)
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Lecture 2: CMOS Transistor Theory
Spring 2007EE130 Lecture 38, Slide 1 Lecture #38 OUTLINE The MOSFET: Bulk-charge theory Body effect parameter Channel length modulation parameter PMOSFET.
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
Lecture 19 OUTLINE The MOSFET: Structure and operation
ECE 431 Digital Circuit Design Chapter 3 MOS Transistor (MOSFET) (slides 2: key Notes) Lecture given by Qiliang Li 1.
Semiconductor Devices III Physics 355. Transistors in CPUs Moore’s Law (1965): the number of components in an integrated circuit will double every year;
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
EE130/230A Discussion 11 Peng Zheng.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 35 MOS Field-Effect Transistor (MOSFET) The MOSFET is an MOS capacitor with Source/Drain.
ECE 342 Electronic Circuits 2. MOS Transistors
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
EE213 VLSI Design S Daniels Channel Current = Rate of Flow of Charge I ds = Q/τ sd Derive transit time τ sd τ sd = channel length (L) / carrier velocity.
NOTICES Project proposal due now Format is on schedule page
Norhayati Soin 06 KEEE 4426 WEEK 7/1 6/02/2006 CHAPTER 2 WEEK 7 CHAPTER 2 MOSFETS I-V CHARACTERISTICS CHAPTER 2.
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Chapter 5: Field Effect Transistor
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
Modern VLSI Design 4e: Chapter 2 Copyright  2009 Prentice Hall PTR Topics n Derivation of transistor characteristics.
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Chapter 4 Field-Effect Transistors
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004.
Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
Field Effect Transistors
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
1 Chapter 5. Metal Oxide Silicon Field-Effect Transistors (MOSFETs)
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
VLSI System Design Lect. 2.2 CMOS Transistor Theory2 Engr. Anees ul Husnain ( Department of Electronics.
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
MOSFET Current Voltage Characteristics Consider the cross-sectional view of an n-channel MOSFET operating in linear mode (picture below) We assume the.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
Metal-oxide-semiconductor field-effect transistors (MOSFETs) allow high density and low power dissipation. To reduce system cost and increase portability,
Field Effect Transistor (FET)
Transistors (MOSFETs)
The MOS capacitor. (a) Physical structure of an n+-Si/SiO2/p-Si MOS capacitor, and (b) cross section (c) The energy band diagram under charge neutrality.
ECE 333 Linear Electronics
Submitted by- RAMSHANKAR KUMAR S7,ECE, DOE,CUSAT Division of Electronics Engineering, SOE,CUSAT1.
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
ELECTRONICS II VLSI DESIGN FALL 2013 LECTURE 5 INSTRUCTOR: L.M. HEAD, PhD ELECTRICAL & COMPUTER ENGINEERING ROWAN UNIVERSITY.
1 Models for Hand Analysis NMOS Transistor PMOS Transistor V DSN  V GSN -V TN V DSN  V GSN -V TN V DSP  V GSP -V TP V DSP  V GSP -V TP K N =(W/L)K’
Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
UNIT II : BASIC ELECTRICAL PROPERTIES
Device Structure & Simulation
Digital Integrated Circuits 11: MOS Transistor Design and Modeling
Lecture 20 OUTLINE The MOSFET (cont’d)
Lecture 20 OUTLINE The MOSFET (cont’d)
Presentation transcript:

PROJECT GUIDE GROUP MEMBERS Dr.B.GOPI,B.E.M.E.Ph.D P.MENAKA G.NIVEDHA M.PAVITHRA M.POORNIMA G.PRIYA 1

 A numerical study on performance of MOSFET is analyzed. The drain current value of MOSFET can be reduced by varying substrate, gate and gate oxide materials. By reducing the drain current ( I d ), the power dissipation can be reduced. Thus the performance of the device can be increased by reducing the drain current ( I d ). 2

 Single gate MOSFET  Output characteristics  Transfer characteristics  On state Resistance  Power dissipation 3

4

SUBSTRATE MATERIALS  Silicon  Germanium GATE MATERIAL  Aluminium GATE OXIDE MATERIALS  Silicon di oxide  Hafnium oxide  Air 5

I d =k n W/L((V gs -V T )V ds -(V ds 2 /2)) k n =C ox µ n Where I d – drain current k n - process parameter W-width of gate L-length of gate V gs – gate source voltage V T - threshold voltage V ds - drain source voltage C ox - gate oxide capacitance µ n - charge carrier effective mobility 6

 Output characteristics is a plot between drain voltage(V DS ) and drain current(I D ) by keeping gate voltage(V GS ) constant.  CUTOFF REGION: I D =0  LINEAR REGION : I D = µ n C 0x W/L ((V GS -V T )V DS -(V DS 2 /2)) 7

SATURATION REGION : I D =0.5 µ n C 0x W/L(V GS- V T ) 2 µ n – mobility C 0X – capacitance of oxide layer C 0X – (ε 0 ε r )/t 0x ε 0 –permittivity of free space ε 0 –8.854*10^-12 ε r –relative permittivity 8

9 V ds (2V) I D (A) V ds (3V) I D (A) V ds (4V) I D (A) V ds (5V) I D (A) V ds (6V) I D (A) 05.01E E E E E

10

 R ON = 1/(μ n C OX W/L)(V gs -V ds -V T ) μ n -charge carrier effective mobility C OX - gate oxide capacitance W –width of the gate L-length of the gate V gs – gate source voltage V T - threshold voltage V ds - drain source voltage 11

12 I d (A)RON2(Ω)I d (A)RON3(Ω)I d (A)RON4(Ω)I d (A)RON5(Ω)I d (A)RON6(Ω) 5.01E E E E E

13

P D = I D 2 R ON I D = drain current R ON = ON state resistance 14

15 I d (A)Pd2(W) I d (A)Pd3(W) I d (A)Pd4(W) I d (A)Pd5(W) I d (A)Pd6(W) 5.01E E E E E E E

16

 Output characteristics is a plot between gate voltage (V GS ) and drain current(I D ) by keeping drain voltage(V DS ) constant 17

18 Gate voltage(V)Drain current (A) 01.44E E E E E E

19

 “ HYBRID Ge-Si BASED MOSFET DEVICES” in the “International Journal of Electrical, Electronics and Computer System (IJEECS)”  “ VARIATION OF GATE MATERIALS FOR HYBRID GE-SI MOSFET” in the “International Journal of Nanotechnology and Application journal” 20

 “HYBRID AlGaAs-SI BASED MOSFET DEVICES” in the “IOSR Journal of vlsi and signal processing”  “TRI-GATE STRUCTURE TO REDUCE DRAIN CURRENT” in “International Journal Of Electrical, Electronics and Telecommunication Engineering Recent Science Publications” 21

 “ ANALYSING THE PERFORMANCE OF MOSFET BY VARYING THE SUBSTRATE MATERIALS” in “Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering (IJIREEICE)”  “COMPARATIVE STUDY ON THE PERFORMANCE OF MOSFET WITH GOLD AND SILVER AS GATE MATERIALS” in “IMPACT :International Journal of Research in Engineering & Technology ” 22

 We have obtained output characteristics, transfer characteristics, ON resistance, power dissipation for MOSFET by changing the substrate and gate materials.  Thus the power dissipation of MOSFET is reduced with the help of reducing the drain current and the performance of the device is increased through this. 23

 H. Iwai, Extended Abstracts th International Workshop on Junction Technology (IWJT '08) (Shanghai, China 2008 May 15-16, IEEE Press) p. 1. [DOI: /IWJT ].  International Technology Roadmap for Semiconductors (ITRS) 2007 Edition.  Available from:  B. Razavi, Design of Analog CMOSIntegrated Circuits (McGraw-Hill, Boston,MA, 2001).  R. F. Pierret, Semiconductor Device Fundamentals (Addison- Wesley, Reading,MA, 1996) p

 J. Appenzeller et al., “Scheme for the fabrication of ultrashort channel MOSFETs,” Appl. Phys. Lett., vol. 77, pp. 298–300, July 2000  B. Yu et al., “15 nm gate length planar CMOS transistor,” in IEDM Tech.Dig., 2001, pp. 937–