Fig. 9-1. Are you the “slow-twitch” or “fast-twitch”? 2:15:25 London 2003.

Slides:



Advertisements
Similar presentations
Respiration. Breathing and Respiration Cellular Aerobic Respiration Efficiency of Respiration Cellular Anaerobic Respiration Respiration of Carbohydrate,
Advertisements

 The summary equation of cellular respiration.  The difference between fermentation and cellular respiration.  The role of glycolysis in oxidizing.
Ch 6 Cellular Respiration. Energy for life ECOSYSTEM Photosynthesis in chloroplasts Glucose Cellular respiration in mitochondria H2OH2O CO 2 O2O2  
Ch 6 Cellular Respiration. Energy for life ECOSYSTEM Photosynthesis in chloroplasts Glucose Cellular respiration in mitochondria H2OH2O CO 2 O2O2  
INTRODUCTION TO CELLULAR RESPIRATION Copyright © 2009 Pearson Education, Inc.
CELLULAR RESPIRATION CHAPTER 9 SC B-3.2 Summarize the basic aerobic & anaerobic processes of cellular respiration & interpret the equation.
Cellular Respiration: Harvesting Chemical Energy
How Cells Harvest Chemical Energy
Key Themes (2) “Think Like a Biologist”: Understand What Life Is. “Unity” of life: What are common features of eukaryotes? Energy conversions: Sugar breakdown.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
 Organisms must take in energy from outside sources.  Energy is incorporated into organic molecules such as glucose in the process of photosynthesis.
Ch 9 – Cellular Respiration: Harvesting Chemical Energy
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Cellular respiration: Harvesting chemical energy.
Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig Draw this drawing on a blank sheet of cellulose.
How Cells Harvest Energy Chapter 6
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Cellular Respiration Breathe in… breathe out… or not! Boehm 2010.
Cellular Respiration.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Catabolic Pathways and Production of ATP C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O.
Cellular Respiration: Harvesting Chemical Energy.
Fig. 9-1 Figure 9.1 How do these leaves power the work of life for the giant panda?
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Biology – Campbell Reece.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
10/18/11 Chapter 9: Cellular Respiration. The Principle of Redox Chemical reactions that transfer electrons between reactants are called oxidation- reduction.
Cellular Respiration: Harvesting Chemical Energy
LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most.
Chapter 9 Cellular Respiration: Harvesting Chemical Energy.
How Cells Harvest Chemical Energy
CELLULAR RESPIRATION How Cells Harvest Chemical Energy.
LE 8-8 Phosphate groups Ribose Adenine. Using Hydrolysis to break the phosphate bond.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: Life Is Work Living cells require energy from outside sources Some animals,
Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most cellular.
Fig Are you the “slow-twitch” or “fast-twitch”? Barbara Radcliffe 2:15:25 London World Championships Berlin, Germany Usain Bolt 9.58.
Getting ATP from food with and without Oxygen. Fig. 9-1.
INTRODUCTION TO CELLULAR RESPIRATION
The Cellular Respiration
Cellular Respiration. What is Cellular Respiration? Cellular respiration is a catabolic pathway in which oxygen is consumed along with organic fuel. In.
Respiration occurs in three metabolic stages: glycolysis, the Krebs cycle, and the electron transport chain and oxidative phosphorylation. Respiration.
Chapter 6 Cellular Respiration. Outline Day 1 –Energy Flow and Carbon Cycling –Overview of Energy Metabolism –Redox Reactions –Electrons and Role of Oxygen.
Exam Critical Concepts Chapters 9 & 10 Cellular Energy.
Cellular Respiration What is Cellular Respiration? Step-by-step breakdown of high- energy glucose molecules to release energy Takes place day and night.
Connecting Cellular Respiration and Photosynthesis Living cells require energy from outside sources Some animals, such as chimpanzees, obtain energy by.
Cellular Respiration and Fermentation
Cellular Respiration.
How Cells Harvest Chemical Energy
Standardized Test Prep
Cellular Respiration: Harvesting Chemical Energy
Chapter 7: Cellular Respiration pages
Chapter 9: Respiration.
Cellular Respiration Harvesting Chemical Energy
The Process of Cellular Respiration
In the presence of O2, pyruvate enters the mitochondrion
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration and Fermentation
Cellular Respiration: Harvesting Chemical Energy
Overview: Living cells require energy from outside sources
Cellular Respiration and Fermentation
How Cells Harvest Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Concept 9.4: During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis Following glycolysis and the citric acid cycle,
Cellular Respiration and Fermentation
Cellular Respiration Fig. 9-1
Cellular Respiration: Harvesting Chemical Energy
AP Biology Ch. 9 Cellular Respiration
Fig. 9-1 Figure 9.1 How do these leaves power the work of life for the giant panda?
© 2017 Pearson Education, Inc.
Presentation transcript:

Fig. 9-1

Are you the “slow-twitch” or “fast-twitch”? 2:15:25 London 2003

Florence Griffith Joyner 100M – 10.49s 1988

The Race

Fast twitch muscle slow twitch muscle

What makes these muscle fibers different? The process for making ATP varies Slow fibers do it aerobically (O 2 ) Fast fibers w/o O 2 (anaerobic) # of mitochondrion vary, amt. of myoglobin

Efficiency of Cellular Respiration ATP per glucose molecule 40% of energy from glucose is harvested 60% heat 1 muscle cell spends/regenerates 10 million ATP/sec

Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most cellular work Heat energy ATP

C 6 H 12 O O 2  6 CO H 2 O + Energy Energy = (ATP + heat) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 9-UN2 becomes oxidized becomes reduced

Fig. 9-UN1 becomes oxidized (loses electron) becomes reduced (gains electron)

Oxidation of Organic Fuel Molecules During Cellular Respiration During cellular respiration, the fuel (such as glucose) is oxidized and becomes CO 2, and O 2 is reduced forming H 2 O: Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 9-UN3 becomes oxidized becomes reduced

The Stages of Cellular Respiration: A Preview Cellular respiration has three stages: – Glycolysis (breaks down glucose into two molecules of pyruvate) – The citric acid cycle (completes the breakdown of glucose) or Krebs Cycle – Oxidative phosphorylation (accounts for most of the ATP synthesis) or ETC Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Glucose + oxygen GlycolysisKrebs Cycle Electron Transport Chain Carbon dioxide + water

Fig Mitochondrion Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH Substrate-level phosphorylation ATP Electrons carried via NADH and FADH 2 Citric acid cycle

Fig Mitochondrion Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH Substrate-level phosphorylation ATP Electrons carried via NADH and FADH 2 Oxidative phosphorylation ATP Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis

The process that generates most of the ATP is called oxidative phosphorylation because it is powered by redox reactions BioFlix: Cellular Respiration BioFlix: Cellular Respiration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 9-7 Enzyme ADP P Substrate Enzyme ATP + Product

Concept 9.2: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate Glycolysis (“splitting of sugar”) breaks down glucose into two molecules of pyruvate Glycolysis occurs in the cytoplasm and has two major phases: – Energy investment phase – Energy payoff phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 9-8 Energy investment phase Glucose 2 ADP + 2 P 2 ATPused formed 4 ATP Energy payoff phase 4 ADP + 4 P 2 NAD e – + 4 H + 2 NADH + 2 H + 2 Pyruvate + 2 H 2 O Glucose Net 4 ATP formed – 2 ATP used2 ATP 2 NAD e – + 4 H + 2 NADH + 2 H +

Concept 9.3: The citric acid cycle completes the energy-yielding oxidation of organic molecules In the presence of O 2, pyruvate enters the mitochondrion Before the citric acid cycle can begin, pyruvate must be converted to acetyl CoA, which links the cycle to glycolysis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The citric acid cycle, also called the Krebs cycle, takes place within the mitochondrial matrix The cycle oxidizes organic fuel derived from pyruvate, generating 1 ATP, 3 NADH, and 1 FADH 2 per turn Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Pyruvate NAD + NADH + H + Acetyl CoA CO 2 CoA Citric acid cycle FADH 2 FAD CO NAD H + ADP +P i ATP NADH

Fig Protein complex of electron carriers H+H+ H+H+ H+H+ Cyt c Q    VV FADH 2 FAD NAD + NADH (carrying electrons from food) Electron transport chain 2 H / 2 O 2 H2OH2O ADP + P i Chemiosmosis Oxidative phosphorylation H+H+ H+H+ ATP synthase ATP 21

Fig INTERMEMBRANE SPACE Rotor H+H+ Stator Internal rod Cata- lytic knob ADP + P ATP i MITOCHONDRIAL MATRIX

Types of Fermentation Fermentation consists of glycolysis plus reactions that regenerate NAD +, which can be reused by glycolysis Two common types are alcohol fermentation and lactic acid fermentation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

In alcohol fermentation, pyruvate is converted to ethanol in two steps, with the first releasing CO 2 Alcohol fermentation by yeast is used in brewing, winemaking, and baking Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

In lactic acid fermentation, pyruvate is reduced to NADH, forming lactate as an end product, with no release of CO 2 Lactic acid fermentation by some fungi and bacteria is used to make cheese and yogurt Human muscle cells use lactic acid fermentation to generate ATP when O 2 is scarce Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings