High Resolution 3D Diffusion Pulse Sequence Dept. of Radiology Medical Imaging Research Lab. University of Utah Eun-Kee Jeong, Ph.D. Ph.D. Seong-Eun Kim,

Slides:



Advertisements
Similar presentations
Pulse Timing parameters & Weighting
Advertisements

Assessment of tumoural ADC’s in rectal Tumours using Burst: New methodological Developments SJ Doran 1, ASK Dzik-Jurasz 2, J Wolber 2, C Domenig 1, MO.
Imaging Sequences part I
Chapter 7: Gradient Echo Imaging Methods
Proton Spin In absence of a magnetic field, protons spin at random
MRI Phillip W Patton, Ph.D..
In Chan Song, Ph.D. Seoul National University Hospital
Richard Wise FMRI Director +44(0)
M R I Pulse Sequences Jerry Allison Ph.D..
PHYSICS OF MAGNETIC RESONANCE
Institute for Biomedical Engineering EXCITE Afternoon Hands-On MRI Sessions: fMRI & DTI.
MR Sequences and Techniques
Statistical Parametric Mapping
Parameters and Trade-offs
Magnetic Resonance Imaging
Basic Principles MRI related to Neuroimaging Xiaoping Hu Department of Biomedical Engineering Emory University/Georgia Tech
The Danish National Research Foundation’s Center of Functionally Integrative Neuroscience Aarhus University / Aarhus University Hospital Diffusion weighted.
Terry M. Button, Ph.D. Principals of Magnetic Resonance Image Formation.
Psy 8960, Fall ‘06 EPI, Part 11 Pulse sequences Nyquist ghost Chemical shift –FLASH –EPI.
Chapter 10 Lecture Mark D. Herbst, M.D., Ph.D..
Relaxation Exponential time constants T1 T2 T2*
Diffusion Physics H 2 O in the body is always in random motion due to thermal agitation B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen.
Basics of Magnetic Resonance Imaging
FMRI: Biological Basis and Experiment Design Lecture 9: Pulse sequences, Take 3 Slice selection homework review Pulse sequence/k- space trajectory matching.
Steady-state magnetization
Psy 8960, Fall ‘06 Fourier transforms1 –1D: square wave –2D: k x and k y Spatial encoding with gradients Common artifacts Phase map of pineapple slice.
FMRI: Biological Basis and Experiment Design Lecture 7: Gradients and k-space FFT examples –Sampling and aliasing Gradient Gradient echo K-space
FMRI: Biological Basis and Experiment Design Lecture 8: Pulse sequences, Take 2 Gradient echo review K-space review Slice selection K-space navigation.
Psy 8960, Fall ‘06 EPI, Part 2: variants1 Segmentation Partial Fourier Spin echo vs. gradient echo Inversion recovery Long vs. short TE.
Tissue Contrast intrinsic factors –relative quantity of protons tissue proton density –relaxation properties of tissues T1 & T2 relaxation secondary factors.
Medical Imaging Systems: MRI Image Formation
Magnetic Resonance Imaging 4
Principles of MRI Physics and Engineering
Advanced pulse sequences
Imaging Sequences part II
A new method for diffusion imaging using Burst excitation C. Wheeler-Kingshott 1, D. Thomas 2, M. Lythgoe 2, S. Williams 2 and S. J. Doran 1 1 University.
MRI Physics: Just the Basics
Medical Imaging Systems: MRI Image Formation
Chapter 4 Mark D. Herbst, M.D., Ph.D.. Magnetization MRI depends on magnetization of tissues Temporary magnetization occurs when the hydrogen nuclei are.
Pulse sequences.
Pulse Sequences Types of Pulse Sequences: Functional Techniques
Basics of MRI.
RT 4912 Review (A) Rex T. Christensen MHA RT (R) (MR) (CT) (ARRT) CIIP.
Einstein on Brownian Motion 1905 five important papers DTI Basics – Water Diffusion (DTI – Diffusion Tensor Imaging)
Contrast Mechanism and Pulse Sequences Allen W. Song Brain Imaging and Analysis Center Duke University.
DIFFUSION & PERFUSION MRI IMAGING Dr. Mohamed El Safwany, MD.
Quiz In a 2D spin warp or FT MR scan, aliasing should only occur
Contrast Mechanisms in MRI Introduction to Cardiovascular Engineering Michael Jay Schillaci, PhD Managing Director, Physicist Tuesday, September 16 th,
Contrast Mechanism and Pulse Sequences
Statistical Parametric Mapping
BIOE 220/RAD 220 REVIEW SESSION 6 March 5, What We’ll Cover Today General questions? Spinal cord anatomy review Fat in images T2* vs T2 decay Review.
FMRI – Week 4 – Contrast Scott Huettel, Duke University MR Contrast FMRI Graduate Course (NBIO 381, PSY 362) Dr. Scott Huettel, Course Director.
MRI Physics: Pulse Sequences
V.G.Wimalasena Principal School of Radiography
MRI: Contrast Mechanisms and Pulse Sequences
Magnetic Resonance Learning Objectives
Principles of MRI Physics and Engineering Allen W. Song Brain Imaging and Analysis Center Duke University.
DTI Acquisition Guide Donald Brien February 2016.
Einstein on Brownian Motion 1905 five important papers DTI Basics – Water Diffusion.
Chapter 5 Mark D. Herbst, M.D., Ph.D.. The MR Imaging Process Two major functions –Acquisition of RF signals –Reconstruction of images.
Parameters which can be “optimized” Functional Contrast Image signal to noise Hemodynamic Specificity Image quality (warping, dropout) Speed Resolution.
BOLD functional MRI Magnetic properties of oxyhemoglobin and deoxyhemoglobin L. Pauling and C. Coryell, PNAS USA 22: (1936) BOLD effects in vivo.
FMRI data acquisition.
Sunday Case of the Day Physics
MRI Physics in a Nutshell Christian Schwarzbauer
بسم الله الرحمن الرحيم.
Monday Case of the Day Physics
Magnetic Resonance Imaging: Physical Principles
Eduardo H. M. S. G. de Figueiredo, BSc, Arthur F. N. G
MRI Pulse Sequences: IR, EPI, PC, 2D and 3D
Presentation transcript:

High Resolution 3D Diffusion Pulse Sequence Dept. of Radiology Medical Imaging Research Lab. University of Utah Eun-Kee Jeong, Ph.D. Ph.D. Seong-Eun Kim, Ph.D. M.D. Gregory Katzman, M.D. Dennis L. Parker, Ph.D.

Diffusion MRI BASICS

G G echo TE At the echo time TE, NMR signal is decayed by, - T2 decay (spin-spin diffusion) - diffusive motion For any set of diff. gradient pulses Signal loss : by intra-voxel phase dispersion

Conventional T 2 WI DW-EPI Diffusion Imaging : Detection of Acute Stroke

  Diffusion gradients sensitize MR Image to motion of extra-cellular water   Higher diffusive motion  lower signal intensity Tissue Sample A Tissue Sample B Freely Diffusing Water = Dark Freely Diffusing Water = Dark Larger D Larger D Restricted Diffusion = Bright Restricted Diffusion = Bright Smaller D Smaller D Diffusion Imaging: Principles CELL EXTRA-CELLULAR SPACE FREELY DIFFUSING WATER IN EXTRA-CELLULAR SPACE

X Diffusion-Weighting Y Diffusion-Weighting Z Diffusion-Weighting G FE G PE G SS RF Diff. Grad. along different axis SS PE FE

Diffusion Imaging : Diffusion Imaging : TRACTOGRAPHY arc. fasciculus unc. fasciculus

. DWI probes micro motion of H 2 O in tissue.. Largest diffusion in body (CSF): -drift velocity v d = ~0.1mm/sec (ADC = ~2.6x10 -3 mm 2 /sec)   x = ~10  m/100ms TE  Requires large gradient!!   x = ~10  m/100ms TE  Requires large gradient!!. Any physiological motion - velocity v > ~10 mm/sec -> too huge for diff. gradient - motion induced artifact on Multi-shot DWI -One-shot EPI-DWI freezes physiological motion.. Susceptibility artifact Diffusion EPI: GOOD & BAD

single-shot DW-EPI 8 shots DW-EPI CSF motion artifact Off-line correction needed! PE Single-/Multi-shot EPI-DWI

Geometric Distortion in DW-EPI  non-EPI DW MRI.  non-EPI DW MRI. DW EPI DW Propeller (2D FSE based + Motion correection) A patient with post-op symptoms, aneurysm clip caused artifacts in EPI. b=0 b=1000

PURPOSE To develop a high-res., non-EPI Diff., and multi-shot pulse sequence.

METHODS Multi-shot, 3D pulse sequence for higher SNR. - - Multi-shot  Motion-induced phase must be corrected. Motion correction or motion insensitive pulse sequence - - Navigator echo technique is not used. - Preparation - Diffusion Preparation technique Used! - - Small motion may not degrade the resultant images. High resolution: Imaging matrix  256 read-out - - EPI: 128 Read-out  256 RO will generate more geometric distortion.

METHODS Started from GE’s 3D SSFP (FIESTA) Segmentation of 3D SSFP - - Gradient balancing is interrupted.  some loss of steady state. - - Multi-shot 3DFSE-like (CPMG) pulse sequence. - - Each RF pulse  tips some longitudinal magnetization to transverse plane. Segmented 3D SSFP-DW - - Diffusion is encoded as Prep. Pulses in between two segmentations. - - Any phase error caused during DW Prep will be lost by 90 -x  amplitude modulated 3D Seg.SSFP   +x  +y  -y  -x RF G D

3D Seg. SSFP  Segmented 3D SSFP TR  RF G FE G PE G SE   3D SSFP: maintain high steady state (longitudinal & transverse) Diff. Prep.

Acquired signal  Diff. Prep. Magnetization + Re-grown Magnetization l l MR signal is mixture of: - - Diffusion prepared magnetization - - Re-grown magnetization - - Will be significant for spins with short T 1. : T 1 (brain tissues) = ~800 ms  long enough! - - More for non-centric ordering of phase-/slice-encoding - - Centric slice ordering was used to reduce the contribution of re-grown spins.

Longitudinal Magnetization for n th  pulse Typical imaging parameters M ss : Longitudinal steady-state magnetization N : Number of echoes : 32, 48, 64  t : effective echo spacing : ~ 4 ms T 1 : spin-lattice relaxation time : ~ 800 ms  : flip angle : 15 ~ 45 o b tt bb TR To be minimized!!

CENTRIC View-Ordering: 3D Seg.SSFP-DW 3D Seg.SSFP-DW Significant re-grown magnetization Mostly DW magnetization echo number  slice encoding Grad. centric non-centric b = 500

RESULTS

3ddw: SRSS: dog heart vs. EPI DW (fresh in ethanol 70% + water 30 %) (fresh in ethanol 70% + water 30 %) 256x192x48 etl:48TE:66ms FOV: 16cm/2.5 mm tone_factor = 0.4 rf10_on = 0 opflip = 45 o SpSat: Default S/I EPI(256x128) 3D SSSFP b = 0 b = 500

3D Seg.SSFP-DW: Human Volunteer b: 0 (S/I) ADC map b: 0 (S/I) ADC map 256x256x64 etl: x0.86x1.5 mm 3 RCVR BW: 62.5kHz NEX: 2  = 48 o optic nerve

CONCLUSION Segmentation of 3D SSFP: successful Segmentation of 3D SSFP: successful - Chemical fat saturation - Spatial saturation - Diffusion gradients 3D Segmented SSFP-DW 3D Segmented SSFP-DW - High Resolution 3D DWI is acquired. - Almost No susceptibility artifact - Anisotropy is observed. Problem: table vibration  ????

G  G  (a) (b) t=0 t 1 t 1 +  t 2 t 2 +  Gradient RF Phase: stationary & moving spins x z x z x z4 y x z t 1 t 1 +  t 2 t 2 +  x 4 x 1 x 2 (=0) x 3 G

3D Seg.SSFP-DW Sptial SAT, Chem Sat, DW Prep ON  ChemSat Diff.Prep SpSat  ’ -  Echo Train … … -  -  G FE G PE G SE RF Diffusion Prep.

3D Seg.SSFP-DW: ph-/sl- encoding order? 256x160x32, FOV = 16cm,  z = 1.5mm Diffusion grad. along R/L. b = Excised dog heart preserved in formalin  T 1 : ~200 ms

Apodization w/ zero-Filling: 512 ZIP2, ZIP x256 No apodization gaussian apodization Trianglular Apod.  SS 512x256x96(True ACQ.) 256x256x64:phFOV 0.75 etl:48 FOV: 25.6cm/1.0 mm(isotropic) tone_factor = 0.4 rf10_on = 0 opflip = 45 o SpSat: OFF encode_mode=1 (Y-centric), TR/TE: ~250/~60 ms Scan time: ~1:00 min.

3D Seg.SSFP-DW : along different direction A/P R/L S/I A/P R/L S/I 256x256x64 etl: x0.86x1.5 mm 3 RCVR BW: 62.5kHz  = 48 o NEX: 1

3ddw: dog heart (1 yr old) D = 0.5x mm 2 /sec

Signal Intensity vs. b value b = 0 (S/I) b = 0 (S/I) D = 1.48x10 -3 mm 2 /sec ADC Map Single exponential decay Signal from re-grown Mag.: negligible

3D Seg.SSFP-DW : Fresh Celery b = 0 b = 750 A/P R/L S/I A/P R/L S/I 256x160x64 etl:64 NEX: 2 FOV: 16 cm Sl. thickness: 3.0mm  = 40 o ADC maps

3D Seg.SSFP-DW : SpSat, DTIPrep 256x192x32   = 45 oTR:min FOV = 16cm sl.thick.=2.0mm b = 500  S/I  1/ON, 0/OFF D Seg.SSFP   +x  +y  -y  -x RF G D non-centric centric

3ddw: SRSS ( Square root of Sum of squares ) S/I R/L A/P S/I R/L A/P R/L+A/P A/P+S/I S/I+R/L 256x192x48 etl:48TE:66ms FOV: 16cm/1.5 mm SpSat: Default S/I tone_factor = 0.4 Head coil opflip = 45 o rf10_on = 0 tipup_f=0

3D Seg.SSFP-DW vs. EPI-DW 3D SSSFP EPI(256x128) b=750 b=750 b=750 b=750 S/I A/P