1 Chapter I INTRODUCTION. 2  Materials lie at the base of all technological advances.  Advanced materials and advanced processing of materials are critical.

Slides:



Advertisements
Similar presentations
Introduction to Fuel Cells
Advertisements

PH 0101 Unit-5 Lecture-61 Introduction A fuel cell configuration Types of fuel cell Principle, construction and working Advantage, disadvantage and application.
Filippo Parodi /Paolo Capobianco (Ansaldo Fuel Cells S.p.A.)
Unit 6 Fuel Cells
Materials for Electrochemical Energy Conversion
FUEL CELL.
P. 1 / 20 P. 2 / 化石燃料 ─ 主要的能量來源  我們用於取暖、照明、烹飪、運輸等各方面 的能量,超過 95 % 都是由燃燒化石燃料獲 得。  化石燃料主要有三種,分別是煤、石油和天 然氣。
Metallography Lab. 0 Effects of target current on the mechanical properties of Cr-C coatings by using the Unbalanced Magnetron Sputtering Professor : Dr.
2 Section.
John Flake, Semiconductors / Electronic Materials Surface Functionalization of Silicon Nanowires, BOR-RCS $103k/3yrs Significance: Silicon nanowires are.
Center for Advanced Materials University of Houston NASA Research Partnership Center CAM Solid Oxide Micro Fuel Cells: a Strategy for Efficient and Clean.
Chapter 7 Electrical Properties Hong-Wen Wang. Basic of electrical properties What is characteristics of metallic conductivity ? What is characteristics.
1 Chapter IV Semiconductor Fabrication 半導體製造. 2 Semiconductor Fabrication Process 基本上, 整個完整的 IC 元件及電路是在矽晶 片上形成層數不等且材質厚度不同的薄膜 (Film), 經過多次使用光罩 (Mask) 與微影.
1 現在製造學 壓力鍋、不鏽鋼拖罐車. 2 壓力鍋  高壓鍋於 1679 年由法國帕潘發明。  1681 年,他發表文章介紹 “ 蒸煮器 ” 。 “ 蒸煮器 ” 是 在密封器皿中用水煮而使其軟化的裝置。正如 我們現在所知道的那樣,水在高壓下煮時,較 高,這樣便增強了水的溶解力。
Center for Advanced Materials University of Houston NASA Research Partnership Center CAM Thin Film Fuel Cells and Hydrogen Storage Materials for Solar.
Hot Surface Igniters. PRESENTED BY: Joe Barker Brent Blume Sam Alauddin.
第二章 太陽能電池的基本原理 及其結構 2-1 太陽能電池的基本原理 2-2 太陽能電池的基本結構 2-3 太陽能電池的製作.
Introduction to Engineering Mechanics Dar-Yun Chiang.
FPD M. & A. 1 FPD M.&A. -01 液晶平面顯示器的技術 發展現況以及廠商動態.
近接開關 高頻型近接開關 高頻型近接開關 電容型近接開關 電容型近接開關 磁力型近接開關 磁力型近接開關.
太陽電池簡介. 光合作用 Type of cellEfficienciy (%)Characteristics SiliconCrystalline24high cost Multicrystalline18high cost Amorphous13medium cost, unstable CuInSe.
課堂內容  蛋白質 (protein)  蛋白質純化 學生 : 陳建良
1 Fuel Cells ME 252 Thermal-Fluid Systems G. Kallio.
生產系統導論 生產系統簡介 績效衡量 現代工廠之特徵 管理機能.
位準量測 量測槽或桶內物體之高度值 直接式:日常生活中較常使用之方法 推論式:較適合遠距離監測應用.
溶劑可以溶解反應物,形成均勻的反應系統; 溶劑用來調整反應物的濃度與反應溫度,控制速率與方向; 溶劑萃取,分離特定的化合物。 溶劑,特別是有機溶劑,是環境污染的主要來源。 綠色(永續)化學逐漸形成一種新的科學理念。溶劑的選擇 與化學反應的設計,必須加上環境因素的考量。 化學家已發展出許多有機溶劑替代液體及綠色的合成方法:
二氧化碳滅火設備(補充教材) 一、設備概說  (一) 特性.
Nanoscale Electrode Development for Fundamental Studies of Mixed Ionic and Electronic Conductors as High Temperature Fuel Cell Components Jeevitha Evanjeline.
史特靈引擎 (Srirling Engine) - 火力發電的重要裝置之一 1816 年,由蘇格蘭 Robert Stirling 科學家所發明, 此引擎的開發帶動了工業革命的發展。 史特靈引擎: 利用氣體的熱漲冷 縮原理,帶動轉動 軸轉動的裝置。為 火力發電系統中一 個關鍵性的重要裝 置。
Bulk/surface micromachining. Lithography process sequence mask making wafer cleaning/drying spin resist soft bake exposure post-exposure bake.
Materials.
Ceramics Mixture of metallic and non-metallic elements (clay products). Traditional: whiteware, tiles, brick, sewer pipe, pottery, and abrasive wheels.
Summer Course on Exergy and Its Applications EXERGY ANALYSIS of FUEL CELLS C. Ozgur Colpan July 2-4, 2012 Osmaniye Korkut Ata Üniversitesi.
(1) 化學方程式都可以表示哪些意義 ? 复習化學方程式的相關內容 : Zn + 2HCl ZnCl 2 + H 2 金屬也可用鎂 (Mg) 或鐵 (Fe) ;酸也可用稀硫酸來代替 MnO 2 2KClO 3 2KCl + 3O 2 Δ ( 實驗室制氧氣 ) ( 實驗室制氫氣 )
Pure Tungsten As a high performance materials, Pure Tungsten has high melting temperature, high density, low vapor pressure, low thermal expansion combined.
MATERIALS FOR CLEAN ENERGY TECHNOLOGIES ARUMUGAM MANTHIRAM Electrochemical Energy Laboratory
SOFC Technology. Solid Oxide Fuel Cells Intended mainly for stationary applications with an output of 1 kW and larger They work at very high temperatures.
Fundamentals of Material Science and Engineering - Introduction Engr. Lina D. dela Cruz Chemical Engineering Department Technological Institute of the.
An Introduction to Materials Technology Foundations of Technology Unit 3.10.
1 Material Science Composite materials. 2 Composite Materials A composite material consists of two independent and dissimilar materials In which one material.
A study of Fe – substituted (La 0.8 Sr 0.2 ) 0.95 MnO 3-y as cathode material for solid oxide fuel cells B. N. Wani, Mrinal Pai, S.J. Patwe, S. Varma,
Spintronics( 自旋電子學 )-GaN-based 稀 磁性半導體 (diluted magnetic semiconductors,DMSs) 學生:黃鋒文.
Chapter Outline 1.1 What is Materials Science and Engineering?
Inorganic, non-metallic compounds formed by heat. Examples:
Engineering Materials Dr. Berlanty Iskander. Types of Materials.
Chemical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH Nanoscale Ni/NiO films for electrode and electrochemical Devices.
Operational Amplifiers
Engineering Materials
氧化物薄膜製作及電性測量.
1 CHAPTER 8 Phase Diagrams and Microstructure MicrostructureDevelopment.
CHAPTER 6 Imperfections of Structures. 6-I. Introduction defects≡imperfections Engineering materials very large numbers of atoms in small volumes e.g.,
Chapter 16 Composites.
ENGINEERING MATERIALS Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore.
MATERIAL SCIENCE & METALLURGY PREPARED BY- JAY PUJARA Assist. Prof. IN MECHANICAL DEPARTMENT GEC, RAJKOT.
Mar 24 th, 2016 Inorganic Material Chemistry. Gas phase physical deposition 1.Sputtering deposition 2.Evaporation 3.Plasma deposition.
Kaunas University of Technology Department of Mechanical Engineering and Design T450M105 HIGH TEMPERATURE MATERIALS INTERMETALLICS Professor Submitted.
POWDER METALLURGY PROCESS
Flame Synthesized Nanomaterials for Supercapacitor Applications
Renewable Energy Part 3 Professor Mohamed A. El-Sharkawi
Study on Double Perovskite as a Solid Oxide Regenerative Fuel Cell Cathode Material YoungJin Kwon† and Joongmyeon Bae (Dept. of Mechanical Engineering,
BEARING MATERIALS.
Chapter Outline 1.1 What is Materials Science and Engineering?
Intermetallics as innovative CRM-free materials
Material Properties Science
Ceramic introduction.
Electrical and Electronics Engineering Materials
Engineering Materials
Introduction: Classification and Properties of Materials
PDT 153 Materials Structure And Properties
Principles Student Powerpoint – Hydrogen Technologies
Presentation transcript:

1 Chapter I INTRODUCTION

2  Materials lie at the base of all technological advances.  Advanced materials and advanced processing of materials are critical to the nation’s quality of life, security, and economic strength. I-1. Materials  Materials are matters that you use to make something useful, e.g., tableware( 食 ), clothings( 衣 ), vehicles( 行 ), buliding( 住 ), machines, instruments, tools, and components( 科技生產 ).  Advanced materials are the building blocks of advanced technologies.

3 The major classes of materials are:  Metals ( 金屬材料 )  Ceramics ( 陶瓷材料 )  Polymers ( 高分子材料 )  Composites ( 複合材料 )  Semiconductors ( 半導體材料 )  Biomaterials ( 生物材料 ) I-2. Classification of Materials

4 Dense ( heavy) ● High hardness (much higher than polymers, but mostly lower than ceramics) High mechanical strength Ductile and high toughness Can be deformed into complex shapes Electrically conductive High thermal conductivity Medium melting point (much higher than polymers, but mostly lower than ceramics) I-3. Metals I-3. Metals

5  Advances in processing: Fabricated from metal powders by compacting them into a desired shape at high temperature and pressure in a process known as powder metallurgy (PM). Reduced productionn costs through PM will continue to impact the aerospace and automotive fields.

6 I-4. Ceramics (typically, compounds of metallic and nonmetallic elements) Medium dense (lighter than metals but heavier than polymers) Mostly extremely hard High mechanical strength (extremely stiff ) Brittle and low toughness High melting point and high temperature stability(refractory)

7 Highly electrically insulative (but with significant exceptions, e.g., ceramic ionic conductors, superconductors,…) Low thermal conductivity ( with significant exceptions, e.g., AlN, BN, diamond, graphene, carbon nano tube,…) Resistance to chemical attack Resistance to absorption of foreign substances

8  Current and potential applications ˙Automotive industry : engine components. ˙High-performance integrated circuit substrate and package materials, e.g., AlN. ˙Superconductors, YBa2Cu3O7 and Ba2Sr2CaCu2Ox.  Next-generation computers:Flat Panel Display (FPD)/ ceramic electro-optic components ( 螢光材 料 )

9 I-5. Polymers  Relatively easy to synthesize  Low density (light)  Low mechanical strength  Tend to soften at moderate temperatures (limiting the use at low temperatures).  Easily formed into complex shapes ( low temperature processability)  High electrical resistivity( with exceptions)  Extremely low thermal conductivity  Chemical inertness.

10 I-6. Composites comprising two or more different types of materials and possessing the desired properties of the components . Carbon fiber-epoxy composite-the strength and rigidity.  Metal matrix (with ceramic as filler) composite-airframe material  Ceramic-matrix (with other ceramic as filler) composites.  matrix: continuous phase ; filler : noncontinuous

11  High thermal conductivity AlN or BN / Polymer Composite           AlN or BN particles (filler) high thermal high thermal conductivity conductivity high electrical high electrical resistivity resistivity low thermal low thermal expansion expansion polymer (matrix) rigidity rigidity mechanical mechanical strength strength ahesive ahesive high breaking- high breaking- through voltage through voltage low temperature processing low temperature processing

12 I-7. Semiconductors materials possessing semiconducting properties. (usually a ceramic or a polymer.)  Silicon, germanium, GaAs, CdTe and Inp.  Semiconductors must be processed in ways that permit precise controlof composition and structure.  Current and potential applications. Information transfer, changing from electrical to optical signals. The size scale of microelectronic devices.

13 I-8. Biomaterials I-8. Biomaterials materials that can be implanted into human bodies.(can be metals, ceramics or polymers)  to be implanted into human body.e.g., artificial teeth, bones, skins and etc.  must be compatible with body tissues.

14 I-9. Typical Examples of Advanced Materials Development (A) Flat Panel Display (FPD) (phosphors) (carbon nano tube)

15 (B) White Light LED Lighting Chip holders or chip submounts (high thermal comsuctivity ceramics ; AlN)

16 (C) Multilayer Ceramic Capacitor

17

18 Nano-sized dielectric ceramic powder

19 (D) Electronic Substrates (with high thermal conductivity : AlN )

20 4. Cathode: 1.Absorption 2. Electron injection 3. Regeneration Dye-Sensitized Solar Cells mechanism : Properties and photoelectric conversion efficiencies of the DSSC’s fabricated using the TiO 2 electrode synthesized in our Lab. or using the commercial TiO 2 powders. Our research goals : to synthesize various nanopowder and nanostructured materials (TiO 2, ZnO,CeO 2 …) with different morphologies for the fabrication of semiconductor electrode for DSSCs. (E) Photocatalysts

21 A.Objective Chemical Energy conversion Electrical Energy Requirements: High efficiency (= amount of electrical energy obtained per unit amount of chemical energy input). Low environmental pollution (environmental friendly or green) Low cost (F) Solid-Oxide Fuel Cell (SOFC)

22 (a) Traditional Approach fuel (coal, oil, or natural gas) + air High Temp Combustion gas CO 2, H 2 O,…+ pollutants Gas turbine generator Steam turbine generator electrical energy Fuel (chemical energy) Heat (thermal energy) mechanical energy electrical energy Heat 1 (thermal energy) mechanical energy electrical energy Fuel (chemical energy) steam Heat 2 (thermal energy)

23 (b) Fuel Cell Approach Fuel (H 2 or CO) Anode (porous) Electrolyte (dense) Cathode (porous) O -2 O2O2 load Oxidizer (air or O 2 ) Over all reaction H 2 + 1/2O 2 H 2 O (g) + electrical energy One-step conversion (the highest conversion ever obtained)

24 Cathode (Air Electrode) 1/2O 2 (g)+2e - = O -2 2 (s) Requirements : (a)High electronic conductivity. (b)Chemical and dimensional stability. (c)A suitable thermal expansion coefficient. (d)Compatibility and minimum reactivity. (e)Sufficient porosity (oxygen from the gas phase to the air electrode/electrolyte interface). ◎ Materials (formulation) : Lanthanum manganite ( 鑭錳氧化物 ) doped with alkaline and rare-earth elements porous tube.

25 It dissociates at 1000°C at low oxygen pressures( atm). The electronic conductivity: hopping of an electron hole between the +3 and +4 valence states of Mn. Conductivity is enhanced by doping with a divalent ion such as calcium (Ca) or strontium (Sr).  Materials Synthesis : high-purity: La 2 O 3 and MnO 2 solid state reaction Lanthanum  Component fabricationElectrolyte  Materials (formulation) YSZ (8% Y 2 O 3 -ZrO 2 ) has been the most successfully employed. Yttrium oxide stabilizes the high-temperature cubic phase and generates oxygen vacancies; an oxygen vacancy is created for every mole of the dopant Y 2 O 3 : oxygen-ion conductivity. manganite (e.g.,La 0.9 Sr 0.1 MnO 3 )

26  Materials Reguirement, Synthesis and Fabrication free of porosity uniformly thin high oxygen-ion conductivity transport number for electrons as close to zero as possible. ~40-μm-thick layer electrochemical vapor depositon (EVD). 2MeCl y + yH 2 O = 2MeO y/2 + 2yHCl and Anode (Fuel Electrode) O -2 (s) + H 2(g) 1000 ℃ H2O (g) + 2e  Reguirement electronically conducting and sufficient porosity.  Materials (formulation) Nickel (cobalt or ruthenium) in YSZ, thermal expansion sinter forming a skeleton of YSZ around the nickel particles. Nickel powder slurry; EVD process; deposition of a Ni-YSZ slurry sintering.

27 Cross-flow planar design for a solid-oxide fuel cell.

28 P-type perovskite oxide reversible oxidation-reduction behavior. Oxygen excess or deficiency, depending upon the ambient oxygen partial pressure and temperature. Co-flow monolithic design for a solid-solid-oxide fuel cell.

29 Tubular design for a solid-solid-oxide fuel cell.

30

31

32 G. Furnace Repairing (steel company) 渣線 ( 鎂碳磚 ) 壁部 ( 鋁鎂質灌注材 ) ( 鋁鎂不燒磚 ) 底部 ( 沖擊預注塊 ) ( 鋁鎂質灌注材 ) 煉鋼一廠容量 160 噸 煉鋼二廠容量 260 噸 部位材質 Al 2 O 3 SiO 2 MgO 渣線鎂碳磚 -- >75 C:13 壁部 鋁鎂不燒磚 鋁鎂灌注材 >90<1>5 底部 鋁鎂 灌注材 >90<1>5 沖擊區 鋁尖晶石 預注塊 >88<1>4 流鋼嘴 座磚 鋁尖晶石 預注 >88<1>4 攪拌管 座磚 鋁尖晶石 預注 >88<1>4 永久層 腊石磚 高鋁磚 >18 >75 <78 <25 - 斷熱層 高強度 斷熱板 鎂橄欖石 雲母 盛 鋼 桶盛 鋼 桶 煉 鋼 製 程 主 要 爐 體 用 耐 火 材 料煉 鋼 製 程 主 要 爐 體 用 耐 火 材 料 ( 要求:抗爐渣 / 鋼液侵蝕性、耐鋼液沖蝕與抗熱震特性 ) ( 所處條件:高溫,鹽基度變化大的爐渣接觸反應,並經鋼液、 爐渣的劇烈沖擊,以及 LF 電弧輻射熱和激烈的熱震作用。 ) [ 壁部 ( 使用鋁鎂澆注料 ) ・一廠~ 165 回 ( 原用高鋁磚為 70 回 ) ・二廠~ 190 回 ( 原高鋁磚為 100 回 )] ( 一廠 ~ 80 回;二廠 ~ 100 回 )

33 煉 鋼 製 程 主 要 爐 體 用 耐 火 材 料煉 鋼 製 程 主 要 爐 體 用 耐 火 材 料 全部為 MgO-C 磚 轉 爐轉 爐 部位材質 CSiCMgO 爐口鎂碳磚 Upper Cone 鎂碳磚 出鋼口鎂碳磚 壁磚鎂碳磚 加料側鎂碳磚 底吹鎂碳磚 底部磚鎂碳磚 永久層燒成鎂磚 MgO > 90% ( 要求:抗爐渣 / 鋼液侵蝕性、耐鋼液沖蝕、抗熱震與抗氧化特性 ) (~ ℃、 爐渣侵蝕、構造性剝 落、熱震剝落、機械磨耗、氧化脫碳 ) 使用回數 ~ 回 (with slag splashing)

34 Al 2 O 3 -SiC-C 鋁矽碳磚 煉 鐵 製 程 主 要 爐 體 用 耐 火 材 料煉 鐵 製 程 主 要 爐 體 用 耐 火 材 料 魚雷車 衝擊區 鐵水區 渣線區 天井區 ( 要求 : 抗爐渣 / 鐵水侵蝕性、 耐鐵水沖蝕、 抗熱震與抗氧 化特性 ) 三脫作業、爐渣侵蝕、 鐵水之攪動沖刷、氧 化及熱震剝落 裝銑實績 ~30 萬噸