Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova), M. Maire (LAPP),

Slides:



Advertisements
Similar presentations
Alberto Ribon CERN Geant4Workshop Vancouver, September 2003 Tutorial of the Statistical Toolkit
Advertisements

Maria Grazia Pia, INFN Genova Precision Electromagnetic Physics in Geant4: the Atomic Relaxation Models A. Mantero, B. Mascialino, Maria Grazia Pia, S.
Maria Grazia Pia, INFN Genova Test & Analysis Project Maria Grazia Pia, INFN Genova on behalf of the T&A team
Precision validation of Geant4 electromagnetic physics Katsuya Amako, Susanna Guatelli, Vladimir Ivanchenko, Michel Maire, Barbara Mascialino, Koichi Murakami,
Maria Grazia Pia, INFN Genova Geant4 Physics Validation (mostly electromagnetic, but also hadronic…) K. Amako, S. Guatelli, V. Ivanchenko, M. Maire, B.
Simulation of X-ray Fluorescence and Application to Planetary Astrophysics A. Mantero, M. Bavdaz, A. Owens, A. Peacock, M. G. Pia IEEE NSS -- Portland,
Maria Grazia Pia, INFN Genova Atomic Relaxation Models A. Mantero, B. Mascialino, Maria Grazia Pia INFN Genova, Italy P. Nieminen ESA/ESTEC
Test Beam Simulation for ESA BepiColombo Mission Marcos Bavdaz, Alfonso Mantero, Barbara Mascialino, Petteri Nieminen, Alan Owens, Tone Peacock, Maria.
Low Energy Electromagnetic Physics
Geant4-Genova Group Validation of Susanna Guatelli, Alfonso Mantero, Barbara Mascialino, Maria Grazia Pia, Valentina Zampichelli INFN Genova, Italy IEEE.
BME 560 Medical Imaging: X-ray, CT, and Nuclear Methods
Barbara Mascialino, INFN Genova An update on the Goodness of Fit Statistical Toolkit B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Francesco Longo University of Trieste and INFN-Trieste After some discussion at Perugia meeting (P.Boinee, R.Rando, R.Giannitrapani, J.Cohen-Tanugi) Analysis.
Maria Grazia Pia, INFN Genova Geant4 Physics Validation Geant4 Space User Workshop Pasadena, 6-10 November 2006 M.G. Pia On behalf of the LowE EM and Advanced.
20 February 2002Geant4 Users' Workhsop, SLAC1 Low-Energy Electromagnetic Processes in P. Nieminen (ESA-ESTEC)
Interactions with Matter
Maria Grazia Pia, INFN Genova Geant4 Electromagnetic Validation (mostly electromagnetic, but also a bit of hadronic…) K. Amako, G.A.P. Cirrone, G. Cuttone,
Maria Grazia Pia, INFN Genova CERN, 26 July 2004 Background of the Project.
1 M.G. Pia et al. The application of GEANT4 simulation code for brachytherapy treatment Maria Grazia Pia INFN Genova, Italy and CERN/IT
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova
Validation of the Bremsstrahlung models Susanna Guatelli, Barbara Mascialino, Luciano Pandola, Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade IEEE.
Geant4-INFN (Genova-LNS) Team Validation of Geant4 electromagnetic and hadronic models against proton data Validation of Geant4 electromagnetic and hadronic.
Maria Grazia Pia Systematic validation of Geant4 electromagnetic and hadronic models against proton data Systematic validation of Geant4 electromagnetic.
Maria Grazia Pia, CERN/IT and INFN Genova Electromagnetic Physics Maria Grazia Pia CERN/IT and INFN Genova S. Chauvie, V. Grichine, P. Gumplinger, V. Ivanchenko,
Stopping Power The linear stopping power S for charged particles in a given absorber is simply defined as the differential energy loss for that particle.
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics R. Capra, S. Chauvie, G.A.P. Cirrone, G. Cuttone, F. Di Rosa, Z. Francis, S. Guatelli,
Geant4: Electromagnetic Processes 2 V.Ivanchenko, BINP & CERN
Alfonso Mantero, INFN Genova Models for the Simulation of X-Ray Fluorescence and PIXE A. Mantero, S. Saliceti, B. Mascialino, Maria Grazia Pia INFN Genova,
Summary of Work Zhang Qiwei INFN - CIAE. Validation of Geant4 EM physics for gamma rays against the SANDIA, EPDL97 and NIST databases.
Geant4 Collaboration 1 Electromagnetic Physics Authors: P. Gumplinger, M. Maire, P. Nieminen, M.G. Pia, L. Urban Budker Inst. of Physics IHEP Protvino.
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova on behalf of the Low Energy Electromagnetic.
Space Instrumentation. Definition How do we measure these particles? h p+p+ e-e- Device Signal Source.
Geant4 Electromagnetic Physics Introduction V.Ivanchenko, M.Maire, M.Verderi  Process interface  Physics categories  Electromagnetic physics  PhysicsList.
EM physics progress20 January Geant4 Electromagnetic Physics Progress S.Incerti and V.Ivanchenko for Geant4 electromagnetic groups 20 January 2008.
Geant4 Workshop 2004 Maria Grazia Pia, INFN Genova Physics Book Maria Grazia Pia INFN Genova on behalf of the Physics Book Team
IEEE NSS/MIC 2004 Electromagnetic Physics The full set of lecture notes of this Geant4 Course is available at
REMSIM Radiation Exposure and Mission Strategies for Interplanetary Manned Missions Susanna Guatelli, 9 th March 2004, Genova, Italy
Detector Simulation Presentation # 3 Nafisa Tasneem CHEP,KNU  How to do HEP experiment  What is detector simulation?
Precision Validation of Geant4 Electromagnetic Physics Geant4 DNA Project Meeting 26 July 2004, CERN Michela.
Test Beam Simulation for ESA BepiColombo Mission Marcos Bavdaz, Alfonso Mantero, Barbara Mascialino, Petteri Nieminen, Alan Owens, Tone Peacock, Maria.
Medical Image Analysis Interaction of Electromagnetic Radiation with Matter in Medical Imaging Figures come from the textbook: Medical Image Analysis,
Gamma ray interaction with matter A) Primary interactions 1) Coherent scattering (Rayleigh scattering) 2) Incoherent scattering (Compton scattering) 3)
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Electromagnetic Physics
Geant4 Training 2003 Electromagnetic Physics The full set of lecture notes of this Geant4 Course is available at
Validation of EM Part of Geant4
Barbara MascialinoMonte Carlo 2005Chattanooga, April 19 th 2005 Monte Carlo Chattanooga, April 2005 B. Mascialino, A. Pfeiffer, M. G. Pia, A. Ribon,
Electromagnetic Physics Electromagnetic packages in Geant4 Standard Low Energy Optical Muons Different modeling approach Specialized.
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia, INFN Genova on behalf of the LowE WG
Validation of the bremssrahlung process IV Workshop on Geant4 physics validation Susanna Guatelli, Luciano Pandola, Maria Grazia Pia, Valentina Zampichelli.
Validation of Geant4 EM physics for gamma rays against the SANDIA, EPDL97 and NIST databases Zhang Qiwei INFN-LNS/CIAE 14th Geant4 Users and Collaboration.
Electromagnetic physics
Interactions of Ionizing Radiation
Interaction of Radiation with Matter
Chapter 2 Radiation Interactions with Matter East China Institute of Technology School of Nuclear Engineering and Technology LIU Yi-Bao Wang Ling.
Models for the Simulation of X-Ray Fluorescence and PIXE
Geant4 and its validation
Electromagnetic Physics
Geant4 REMSIM application
A Statistical Toolkit for Data Analysis
F. Foppiano, S. Guatelli, B. Mascialino, M. G. Pia, M. Piergentili
Geant4: Electromagnetic Processes 3 V.Ivanchenko, BINP & CERN
Electromagnetic Physics
Geant4 physics validation: Bragg Peak
The Hadrontherapy Geant4 advanced example
An update on the Goodness of Fit Statistical Toolkit
Low-Energy Electromagnetic Processes in
Precision validation of Geant4 electromagnetic physics
G. A. P. Cirrone1, G. Cuttone1, F. Di Rosa1, S. Guatelli1, A
The Geant4 Hadrontherapy Advanced Example
Presentation transcript:

Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova), M. Maire (LAPP), A. Mantero (ESA), B. Mascialino (INFN Genova), P. Nieminen (ESA), L. Pandola(INFN LNGS), S. Parlati (INFN LNGS), A. Pfeiffer (CERN), M.G. Pia (INFN Genova), L. Urban (Budapest) 1st Workshop on Italy-Japan Collaboration on Geant4 Medical Application 1st Workshop on Italy-Japan Collaboration on Geant4 Medical Application Precision Validation of Geant4 Electromagnetic Physics

It handles electrons and positrons gamma, X-ray and optical photons muons charged hadrons ions multiple scattering Bremsstrahlung ionisation annihilation photoelectric effect Compton scattering Rayleigh effect gamma conversion e+e- pair production synchrotron radiation transition radiation Cherenkov refraction reflection absorption scintillation fluorescence Auger Geant4 e.m. package Standard Package LowEnergy Package Muon Package Optical photon Package Electromagnetic Physics

Validation is fundamental in Geant4 Validations at different levels Comparisons to experimental measurements and recognised standard references Unit, integration, system testing Microscopic physics validation Macroscopic validation experimental use cases E.M. Physics Validation

Validation of Geant4 electromagnetic physics models Attenuation coefficients, CSDA ranges, Stopping Power, distributions of physics quantities Quantitative comparisons to experimental data and recognised standard references Microscopic Validation

G4Standard 1.G4 LowE NIST Photon beam (I o ) Transmitted photons (I)  2 N-L =13.1 – =20 - p=0.87  2 N-S =23.2 – =15 - p=0.08 x-ray attenuation coeff in U NIST data Penelope  2 =19.3 =22 p=0.63 Absorber Materials Absorber Materials : Be, Al, Si, Ge, Fe, Cs, Au, Pb, U Photon Mass Attenuation Coefficient

G4 Standard G4 LowE NIST-XCOM  2 N-L =13.1 – =20 - p=0.87  2 N-S =23.2 – =15 - p=0.08 X-ray Attenuation Coefficient - Al

G4 LowE Penelope NIST-XCOM  2 N-P =15.9 – =19 p=0.66 X-ray Attenuation Coefficient - Al

G4 Standard G4 LowE NIST-XCOM  2 N-L =26.3 – =23 - p=0.29  2 N-S =27.9 – =23 - p=0.22 X-ray Attenuation Coefficient - Ge

G4 LowE Penelope NIST-XCOM  2 N-P =10.1 – =21 - p=0.98 X-ray Attenuation Coefficient - Ge

G4 Standard G4 LowE NIST-XCOM  2 N-L =6.6 – =20 - p=0.99  2 N-S =14.7 – =20 - p=0.80 X-ray Attenuation Coefficient - U

G4 LowE Penelope NIST-XCOM  2 N-P =19.3 – =22 - p=0.63 X-ray Attenuation Coefficient - U

G4 Standard G4 LowE NIST-XCOM  2 N-L = 12.9– =8 - p=0.12  2 N-S =8.7 – =6 - p=0.19 Compton Scattering - Al

G4 LowE Penelope NIST-XCOM  2 N-P =2.5 – =6 - p=0.87 Compton Scattering - Al

G4 Standard G4 LowE NIST-XCOM  2 N-L =4.6 – =8 - p=0.80  2 N-S =1.8 – =8 - p=0.99 Compton Scattering - Cs

G4 LowE Penelope NIST-XCOM  2 N-P =4.6 – =8 - p=0.80 Compton Scattering - Cs

G4 LowE NIST-XCOM  2 N-L =13.6 – =11 - p=0.26 Rayleigh Scattering - Al

G4 LowE Penelope NIST-XCOM  2 N-P =7.2 – =8 - p=0.52 Rayleigh Scattering - Al

G4 LowE NIST-XCOM Rayleigh Scattering - Cs

G4 LowE Penelope NIST-XCOM Rayleigh Scattering - Cs

G4 Standard G4 LowE NIST-XCOM Photoelectric Effect - Fe

G4 LowE Penelope NIST-XCOM Photoelectric Effect - Fe

G4 Standard G4 LowE NIST-XCOM Pair Production - Si

G4 LowE Penelope NIST-XCOM Pair Production - Si

G4 Standard G4 LowE-EPDL NIST CSDA range : particle range without energy loss fluctuations and multiple scattering centre Experimental set-up Absorber Materials Absorber Materials : Be, Al, Si, Ge, Fe, Cs, Au, Pb, U  2 N-S =0.267 =28 p=1  2 N-L =1.315 =28 p=1 G4 Standard G4 LowE-EPDL NIST Electrons - Stopping Power and CSDA Range

G4 Standard G4 LowE NIST-ESTAR Electrons - CSDA Range - Al

G4 Standard G4 LowE NIST-ESTAR Electrons - CSDA Range - Pb

G4 Standard G4 LowE NIST-ESTAR Electrons - Stopping Power - Al

G4 Standard G4 LowE NIST-ESTAR Electrons - Stopping Power - Pb

Geant NIST-ESTAR Geant Regression testing Electrons - CSDA Range – Al –G4LowE

Geant NIST-ESTAR Geant Regression testing Electrons - CSDA Range – Pb –G4Standard

G4 Standard G4 LowE NIST-PSTAR Protons - CSDA Range Al

G4 Standard G4 LowE NIST-PSTAR Protons - CSDA Range Pb

G4 Standard G4 LowE Ziegler NIST-PSTAR Protons - Stopping Power Al

G4 Standard G4 LowE NIST-PSTAR Protons - Stopping Power - Pb

Geant NIST-PSTAR Geant Regression testing Protons - CSDA Range – Al – G4LowE

Geant NIST-PSTAR Geant Regression testing Protons - CSDA Range – Al – G4LowE Ziegler

Geant NIST-PSTAR Geant Regression testing Protons - CSDA Range – Al – G4Standard

Geant NIST-PSTAR Geant Regression testing Protons - CSDA Range – Pb – G4LowE

Geant NIST-PSTAR Geant Regression testing Protons - CSDA Range – Pb – G4LowE Ziegler

Geant NIST-PSTAR Geant Regression testing Protons - CSDA Range – Pb –G4Standard

e - beam Experimental set-up Electrons Transmission Tests

Angle of incidence (with respect to the normal to the sample surface) = 0° G4 LowE Lockwood et al. (1981) Incident e - beam Experimental set-up Backscattered e-Electrons Backscattering Coefficient – E=100keV

G4 LowE Lockwood et al. (1981) Angle of incidence (with respect to the normal to the sample surface)=0° Electrons Backscattering Coefficient – E=1MeV Backscattering Coefficient – E=1MeV

G4 LowE Coleman (1992) Positrons - Backscattering coefficient – 30keV

Regression testing G4 Standard G4 LowE NIST-PSTAR

Iceland Basalt Fluorescence Spectrum Counts Energy (keV) Detector response Anderson- Darling Test A c (95%) =0.752 Auger Spectrum in Cu Simulation of Auger emission from pure materials irradiated by an electron beam with continuous spectrum Auger Effect, X-Ray Fluorescence

proton straggling ions antiprotons protons Barkas Effect Much more available or in progress…

Experimental set-up validation Collaboration of Geant4 developers and research groups of different experiments ATLAS CMS Dark matter and experiments Medical Physics Space science Macroscopic Validation

Note: Geant4 validation is not always easy experimental data often exhibit large differences! Backscattering low energies - Au The Problem of Validation: Finding Reliable Data…

Geant4 electromagnetic package encompasses an ample set of physics models, specialised for particle type, energy range and detector applications Geant4 Physics Reference Manual ( Geant4 e.m. physics is subject to a rigorous testing and validation process Many detailed results are available for the validation of basic physics distributions ( Many significant contributions to the validation of Geant4 e.m. physics from test beams and application in the experiments Conclusions

A project has been recently launched for a Geant4 Physics Book To have a solid and comprehensive reference on Geant4 physics Collaborative effort involving Geant4 physics groups, experiments Main focus of the project is Geant4 physics models validation Collaboration with detector experts: valuable and welcome! Geant4 Physics Book