Substrate and oxidative phosphorylation. Substrate-level phosphorylation is a type of chemical reaction that results in the formation and creation of.

Slides:



Advertisements
Similar presentations
Cellular Respiration IB DP Biology: Higher Level/ Option C
Advertisements

CELLULAR RESPIRATION STATIONS Markley. STATION 1: OVERVIEW.
Chemiosmotic theory of oxidative phosphorylation
Energy Generation in Mitochondria and Chloroplasts
Chapter 14 (Part 1) Electron transport. Chemiosmotic Theory Electron Transport: Electrons carried by reduced coenzymes are passed through a chain of.
CELL RESPIRATION.
Biology 107 Cellular Respiration October 3, 2003.
Biology 107 Cellular Respiration September 30, 2005.
Chapter 13 &14 Energy Generation in Mitochondria.
Cellular Respiration Chapter 9.
Lesson 7: Harvesting of Energy “Cellular Respiration”
CELLULAR RESPIRATION CHAPTER 9 SC B-3.2 Summarize the basic aerobic & anaerobic processes of cellular respiration & interpret the equation.
Cellular Respiration: Harvesting Chemical Energy
CELLULAR RESPIRATION BIOLOGY IB/ SL Option C.3.
The Electron Transport Chain. Oxidative Phosphorylation Oxidative Phosphorylation is the indirect formation of ATP. It involves a series of redox reactions.
Key Area 1: Cellular respiration Glycolysis, Citric Acid Cycle, Electron Transport Chain Unit 2: Metabolism and Survival.
AP Biology: Ch. 9 Cellular Respiration. Principles of Energy Conservation As open systems, cells require outside energy sources to perform cellular work.
How Cells Harvest Chemical Energy
How Cells Harvest Chemical Energy
1 Respiration Cellular respiration is a series of reactions that: -are oxidations – loss of electrons -are also dehydrogenations – lost electrons are accompanied.
 Organisms must take in energy from outside sources.  Energy is incorporated into organic molecules such as glucose in the process of photosynthesis.
Cellular Respiration 3.7 & 8.1. Redox = oxidation/reduction reaction  Oxidation- loss of electrons - oxidized when it loses one or more e -  Reduction.
CELLULAR RESPIRATION. Overall Process C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + ENERGY Purpose: Organisms routinely break down complex molecules in controlled.
AP Biology Ch. 9 – Cellular Respiration. Catabolic pathway Fermentation Aerobic respiration Anaerobic respiration Cellular respiration Redox reaction.
ELECTRON TRANSPORT CHAIN NADH and FADH 2, transfer their electrons to a series of compounds (mostly proteins), which are associated with the inner mitochondrial.
INTRODUCTION During reactions involved in fatty acid oxidation and the TCA cycle, reducing equivalents (such as electrons) are derived from sequential.
Electron transport chain Cellular respiration is a series of reactions that: -are oxidations – loss of electrons -are also dehydrogenations lost electrons.
How Cells Harvest Energy Chapter 6
Electron Transport Chain (ETC) & Oxidative Phosphorylation COURSE TITLE: BIOCHEMISTRY 2 COURSE CODE: BCHT 202 PLACEMENT/YEAR/LEVEL: 2nd Year/Level 4, 2nd.
How Cells Harvest Energy
Introduction – all forms of life depend directly or indirectly on light energy captured during photosynthesis – glucose molecules are broken down back.
ADP, ATP and Cellular Respiration
Glucose metabolism Some ATP Big bonus: NADH, FADH2 → REDUCING POWER
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Biology – Campbell Reece.
Ch 25 Metabolism and Energetics Introduction to Metabolism Cells break down organic molecules to obtain energy  Used to generate ATP Most energy production.
Cellular Respiration Continued: The Citric Acid Cycle and Electron Transport Chain.
Cellular Respiration: Harvesting Chemical Energy
Inroduction to Cellular Respiration Open systems need energy from outside sources. Living organisms are open systems Photoautotrophs(pl ants) capture.
LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most.
Pp 69 – 73 & Define cell respiration Cell respiration is the controlled release of energy from organic compounds in cells to form ATP Glucose.
1 Electron Transport System. 2 There are 2 Ways to Make ATP 1. Substrate phosphorylation 2. Electron transfer-dependent oxidative phosphorylation.
Cellular Respiration.
How Cells Harvest Chemical Energy
Mitochondrial Electron Transport The cheetah, whose capacity for aerobic metabolism makes it one of the fastest animals.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings What we have made so far in terms of energy GLYCOLYSISBRIDGEKREBS CYCLE.
Glycolysis, Kreb’s, and ETC
Aim: What is the electron transport chain?
Cellular Respiration 101 by Leslie Patterson, M.S.
Glycolysis, Pyruvate Oxidation and Kreb’s have produced very little ATP and some energy in the form of electron carriers Majority of ATP will come from.
Electron Transport and Oxidative Phosphorylation.
Cellular Respiration Making ATP. Cellular Respiration Cell respiration is the controlled release of energy from organic compounds in cells to form ATP.
Glucose + Oxygen  Carbon Dioxide + Water (+38 ATP) CELLULAR RESPIRATION VIDEO: CRASHCOURSE RESPIRATION SUMMARY.
AP Biology Cellular Respiration Overview Part 1. Process of Cellular Respiration.
Cellular Respiration What is Cellular Respiration? Step-by-step breakdown of high- energy glucose molecules to release energy Takes place day and night.
School of Sciences, Lautoka Campus BIO509 Lecture 27: Respiration
Cellular Respiration - Conclusion
23.2 Electron Transport and ATP
How do cells extract energy from glucose?
How do we release the energy in NADH and FAD
Glycolysis You only need to remember the details of the “net”
Pathways that Harvest and Store Chemical Energy
How Cells Harvest Chemical Energy
Cell Respiration Topic 2.8 and 8.1.
5.7 Electron Transport Chain
5.4 Cellular Respiration Overview
Chapter 18 Metabolic Pathways and Energy Production
AP Biology Ch. 9 Cellular Respiration
Energy in food is stored as carbohydrates (such as glucose), proteins & fats. Before that energy can be used by cells, it must be released and transferred.
Harvesting Chemical Energy
Presentation transcript:

Substrate and oxidative phosphorylation

Substrate-level phosphorylation is a type of chemical reaction that results in the formation and creation of adenosine triphosphate (ATP) by the direct transfer and donation of a phosphoryl (PO3) group to adenosine diphosphate (ADP) from a reactive intermediate. While technically the transfer is PO3, or a phosphoryl group, convention in biological sciences is to refer to this as the transfer of a phosphate group. In cells, it occurs primarily and firstly in the cytoplasm (in glycolysis) under both aerobic and anaerobic conditions.

Unlike oxidative phosphorylation, here the oxidation and phosphorylation are not coupled or joined, although both types of phosphorylation result in ATP. It should be noted that there is an oxidation reaction coupled to phosphorylation, however this occurs in the generation of 1,3- bisphosphoglycerate from 3- phosphoglyceraldehyde via a dehydrogenase. ATP is generated in a separate step (key difference from oxidative phosphorylation) by transfer of the high energy phosphate on 1,3-bisphosphoglycerate to ADP via a kinase.

ATP is synthesized when protons flow back to the mitochondrial matrix through an enzyme complex ATP synthase. The oxidation of fuels and the phosphorylation of ADP are coupled by a proton gradient across the inner mitochondrial membrane. Oxidative phosphorylation is the process in which ATP is formed as a result of the transfer of electrons from NADH or FADH 2 to O 2 by a series of electron carriers.

OXIDATIVE PHOSPHORYLATION IN EUKARYOTES TAKES PLACE IN MITOCHONDRIA Two membranes: outer membrane inner membrane (folded into cristae) Two compartments: (1) the intermembrane space (2) the matrix Inner mitochondrial membrane: Electron transport chain ATP synthase Mitochondrial matrix: Pyruvate dehydrogenase complex Citric acid cycle Fatty acid oxidation Location of mitochondrial complexes The outer membrane is permeable to small molecules and ions because it contains pore-forming protein (porin). The inner membrane is impermeable to ions and polar molecules. Contains transporters (translocases).

THE ELECTRON TRANSPORT CHAIN Series of enzyme complexes (electron carriers) embedded in the inner mitochondrial membrane, which oxidize NADH 2 and FADH 2 and transport electrons to oxygen is called respiratory electron-transport chain (ETC). The sequence of electron carriers in ETC cyt b NADH FMN Fe-S Co-Q Fe-S cyt c 1 cyt c cyt a cyt a 3 O 2 succinate FAD Fe-S

High-Energy Electrons: Redox Potentials and Free-Energy Changes In oxidative phosphorylation, the electron transfer potential of NADH or FADH 2 is converted into the phosphoryl transfer potential of ATP. Phosphoryl transfer potential is  G°' (energy released during the hydrolysis of activated phos- phate compound).  G°' for ATP = -7.3 kcal mol -1 Electron transfer potential is expressed as E' o, the (also called redox potential, reduction potential, or oxidation-reduction potential).

E' o (reduction potential) is a measure of how easily a compound can be reduced (how easily it can accept electron). All compounds are compared to reduction potential of hydrogen wich is 0.0 V. The larger the value of E' o of a carrier in ETC the better it functions as an electron acceptor (oxidizing factor). Electrons flow through the ETC components spontaneously in the direction of increasing reduction potentials. E' o of NADH = volts (strong reducing agent) E' o of O 2 = volts (strong oxidizing agent) cyt b NADH FMN Fe-S Co-Q Fe-S cyt c 1 cyt c cyt a cyt a 3 O 2 succinate FAD Fe-S

Important characteristic of ETC is the amount of energy released upon electron transfer from one carrier to another. This energy can be calculated using the formula:  G o ’=-nF  E’ o n – number of electrons transferred from one carrier to another; F – the Faraday constant (23.06 kcal/volt mol);  E’ o – the difference in reduction potential between two carriers. When two electrons pass from NADH to O 2 :  G o ’=-2*96,5*(+0,82-(-0,32)) = kcal/mol