Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Slides:



Advertisements
Similar presentations
1 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen Data Communication, Lecture6 Digital Baseband Transmission.
Advertisements

Reducing jitter utilising adaptive pre-emphasis FIR filter for high speed serial links Marius Goosen Supervisor: Prof. Saurabh Sinha Microelectronics &
© 2014 Synopsys. All rights reserved.1 Thesis Progress Adaptive Equalization of Interchip communication Dénis Silva May 2014.
Peak Distortion ISI Analysis
Custom Implementation of DSP Systems School of Electrical and
Design of High-Speed Laser Driver Using a Standard CMOS Technology for Optical Data Transmission Dissertation Defense Presentation By Seok Hun Hyun Advisor:
1/42 Changkun Park Title Dual mode RF CMOS Power Amplifier with transformer for polar transmitters March. 26, 2007 Changkun Park Wave Embedded Integrated.
ICTON 2007, Rome, Italy The Performance of PPM using Neural Network and Symbol Decoding for Diffused Indoor Optical Wireless Links 1 S. Rajbhandari, Z.
Department of electrical and computer engineering An Equalization Technique for High Rate OFDM Systems Mehdi Basiri.
A Zero-IF 60GHz Transceiver in 65nm CMOS with > 3.5Gb/s Links
Externally Tested Scan Circuit with Built-In Activity Monitor and Adaptive Test Clock Priyadharshini Shanmugasundaram Vishwani D. Agrawal.
RAKE Receiver Marcel Bautista February 12, Propagation of Tx Signal.
1 Improving Chromatic Dispersion Tolerance in Long-Haul Fibre Links using Coherent OOFDM M. A. Jarajreh, Z. Ghassemlooy, and W. P. Ng Optical Communications.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
Simulation of an Optical Fiber Point to Point Communication link using Simulink By Nihal Shastry Uday Madireddy Nitin Ravi.
60-GHz Direct-Conversion Transceiver on 130-nm CMOS with Integrated Digital Control Interface B. N. Wicks, C. M. Ta, F. Zhang, P. Nadagouda, B. Yang, Z.
DSP Group, EE, Caltech, Pasadena CA IIR Ultra-Wideband Pulse Shaper Design Chun-yang Chen and P.P. Vaidyananthan California Institute of Technology.
High-Speed Circuits & Systems Laboratory Electronic Circuits for Optical Systems : Transimpedance Amplifier (TIA) Jin-Sung Youn
Receiver Design for Ultrawideband PPM Communication Systems Vijay Ullal Clemson University July 29, SURE Program.
Applying the Furaxa IP Core to UltraWideBand A novel method of pulse generation yields dramatic engineering, manufacturing and market advantages.
Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,
Direct Channel Eye Pattern Correction in High Speed Links By Steve Chacko & Ellis Goldberg Furaxa Inc. The engineering metric for physical communication.
Radar and EW Sub-Systems Saurabh Sinha Thursday, 27 August 2015 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical,
Digital Fundamentals Floyd Chapter 1 Tenth Edition
1 Business Telecommunications Data and Computer Communications Chapter 3 Data Transmission.
Introduction to Adaptive Digital Filters Algorithms
CSICS 26 Oct A 49-Gb/s, 7-Tap Transversal Filter in 0.18  m SiGe BiCMOS for Backplane Equalization Altan Hazneci and Sorin Voinigescu Edward S.
CE 4228 Data Communications and Networking
RF ICs and mm-Wave ICs Saurabh Sinha, PhD (Eng)
Single Fiber Optical IO on standard 0.35 um CMOS Nan Marie Jokerst Martin A. Brooke Duke University Department of Electrical and Computer Engineering
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE445S Real-Time Digital Signal Processing Lab Fall.
A Quad-Channel 3.125Gb/s/ch Serial-Link Transceiver with Mixed-Mode Adaptive Equalizer in 0.18µm CMOS Authors : Jeongsik Yang, Jinwook Kim, Sangjin Byun,
October 31st, 2005CSICS Presentation1 A 1-Tap 40-Gbps Decision Feedback Equalizer in a  m SiGe BiCMOS Technology Adesh Garg, Anthony Chan Carusone.
Kuang-Yu,Li 2013 IEE5011 –Autumn 2013 Memory Systems Duty Cycle Correctors (DCC) In GDDR5 SDRAM Kuang-Yu, Li Department of Electronics Engineering National.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals with PLD Programming.
Radar and EW Sub-systems Saurabh Sinha Microelectronics & Electronics Group University of Pretoria, South Africa Thursday, 15 October 2015 Departement.
Virginia Polytechnic Institute and State University Bradley Department of Electrical and Computer Engineering 1.
Physical Layer Update – EWG Presenting: Ian Colloff, EWG.
SI Fundamentals Short Course - Equalization
A 1.25-Gb/s Digitally-Controlled Dual-Loop Clock and Data Recovery Circuit with Improved Effective Phase Resolution Chang-Kyung Seong 1), Seung-Woo Lee.
Sales Training 3/14/2013 Owner : SAYD Cypress Confidential IDT ICS8543 vs. Cypress CY2DL1504 Clock distribution in Router applications Clock signals delivered.
Design studies of a low power serial data link for a possible upgrade of the CMS pixel detector Beat Meier, Paul Scherrer Institut PSI TWEPP 2008.
A 1-V 2.4-GHz Low-Power Fractional-N Frequency Synthesizer with Sigma-Delta Modulator Controller 指導教授 : 林志明 教授 學生 : 黃世一 Shuenn-Yuh Lee; Chung-Han Cheng;
1 ELE5 COMMUNICATIONS SYSTEMS REVISION NOTES. 2 Generalised System.
VTS 2012: Zhao-Agrawal1 Net Diagnosis using Stuck-at and Transition Fault Models Lixing Zhao* Vishwani D. Agrawal Department of Electrical and Computer.
Tod Dickson University of Toronto June 9, 2005
1 Strategies for Coping with Non-linear and Non-time Invariant Behavior for High Speed Serial Buffer Modeling Richard Mellitz Results from DesignCon2008.
ECE 4371, Fall, 2015 Introduction to Telecommunication Engineering/Telecommunication Laboratory Zhu Han Department of Electrical and Computer Engineering.
Floyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd © 2008 Pearson Education Chapter 1.
Timothy O. Dickson and Sorin P. Voinigescu Edward S. Rogers, Sr. Dept of Electrical and Computer Engineering University of Toronto CSICS November 15, 2006.
Coupling and Cross-talk Analysis in High Speed Interconnects
Department of Electrical and Computer Engineering
A 20/30 Gbps CMOS Backplane Driver with Digital Pre-emphasis Paul Westergaard, Timothy Dickson, and Sorin Voinigescu University of Toronto Canada.
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
Chapter 4_ part 1b Baseband Data Transmission EKT 357 Digital Communications.
HIGH SPEED DATA ACQUISITION SYSTEM RENISH THOMAS EECS /08/2015.
Doc.: IEEE Submission John Lampe, Nanotron Technologies, GmbHSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
1 st semester 1436 / Modulation Continuous wave (CW) modulation AM Angle modulation FM PM Pulse Modulation Analog Pulse Modulation PAMPPMPDM Digital.
Project Proposal Of A 65nm CMOS UWB Transmitter Design
1 Status report on the LAr optical link 1.Introduction and a short review. 2.The ASIC development. 3.Optical interface. 4.Conclusions and thoughts Jingbo.
TI Information – Selective Disclosure 1 TLK10xxx High Speed SerDes Overview Communications Interface High Performance Analog.
EKT124 Digital Electronics 1 Introduction to Digital Electronics
Sassan Tabatabaei, Freddy Ben-Zeev and Michael Lee
Sassan Tabatabaei, Freddy Ben-Zeev and Michael Lee
A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique Microwave and Wireless Components Letters, IEEE Volume 17,  Issue.
The Role of Light in High Speed Digital Design
A Large Swing, 40-Gb/s SiGe BiCMOS Driver with Adjustable Pre-Emphasis for Data Transmission over 75W Coaxial Cable Ricardo A. Aroca & Sorin P. Voinigescu.
TLK10xxx High Speed SerDes Overview
Digital Fundamentals Floyd Chapter 1 Tenth Edition
Presentation transcript:

Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha Reducing jitter utilising adaptive FIR pre-emphasis for high speed serial links Marius Goosen Marius Goosen Saurabh Sinha Saurabh Sinha Microelectronics & Electronics Group University of Pretoria, South Africa Sunday, 25 October 2015

Background M-data lines combined into a high speed serial data line Less skew between lines Higher bandwidth capability Lower pin count and cost of implementation Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha 2

Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha High speed serial links ReferenceData rateTechnologyPre-emphasis [1]1 Gb/sCMOSNone [2]5 Gb/sCMOS3-tap [3]10 Gb/sCMOS5-tap [4]10 Gb/sBiCMOSNone [1] C.Y. Yang and Y. Lee, “A 0.18 μm CMOS 1 Gb/s serial link transceiver by using PWM and PAM techniques”, IEEE International Symp. on Circuits and systems, Vol. 2, pp , Kobe, May [2] C.H. Lin, C.H. Wang and S.J. Jou, “5 Gbps serial link transmitter with pre-emphasis”, IEEE Proc. of the 2003 Asia South Pacific design automation conf., Kitakyushu, pp , Jan [3] M. Li, T. Kwasniewski, S. Wang and Y. Tao, “A 10 Gb/s transmitter with multi-tap FIR pre-emphasis in 0.18μm CMOS technology”, IEEE Proc. of the 2005 Asia South Pacific design automation conf., Shanghai, pp , Jan [4] D.J. Friedman, M. Meghelli, B.D. Parker, J. Yang, H.A Ainspan, A.V. Rylyakov, Y.H. Kwark, M.B. Ritter, L. Shan, S.J. Zier, M. Soma and M. Soyuer, “SiGe BiCMOS integrated circuits for high speed serial communication links”, IBM J. Res. & Dev., Vol 47, No 2/3, Mar

Frequency dependant distortion: Package parasitics Introduces frequency dependant devices 4 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

Frequency dependant distortion: Copper backplane channel Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha 5

Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha Frequency dependant distortion: Channel response Loss of GHz Severe frequency dependent distortion 6

Long tail interferes with adjacent bits Reduced amplitude Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha Frequency dependant distortion: Impulse response 7

Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha Deterministic jitter Deterministic jitter: –Duty cycle distortion –Data dependent jitter DDJ caused by this frequency dependent distortion DDJ causes uncertainty in pulse edges 8 Unit interval Ideal sampling instant Error region

Adaptive pre-emphasis 9 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha Conventional pre-emphasis –Externally adjustably filter taps –Fixed filter taps Adaptive pre-emphasis –Automatically finds optimal filter taps –Does not require a characterised channel Requires characterised channel

Pilot signaling and peak detection Training sequence together with tap value ensures that a maximum is achieved at the tap of interest 10 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha Mathematical simulation results ● Before pre-emphasis: Completely closed eye diagram! 11

Mathematical simulation results ● ● 12 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha Time (μs) Tap coefficient value Time (μs) Tap coefficient value Time (μs) Tap coefficient value Time (μs) Tap coefficient value

Mathematical simulation results ● ● ● After pre-emphasis tap training: Open eye diagram, minimal jitter. 13 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

Mathematical simulation results ● ● ● ● 14 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

Mathematical simulation results ● ● ● ● ● 15 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha ~10 ps ~30 ps ~800 ps

Implemented system 16 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

Circuit layouts ● 17 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha Testability Logic Pilot signal generator FIR filter taps

Circuit layouts ● ● 18 Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha Amplifier + comparatorControl pulse generation

Circuit layouts ● ● ● 19 RX TX Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

Conclusion DDJ severely distorts the data at the receiver DDJ can be overcome with implementation of pre-emphasis Adaptive pre-emphasis alters for uncharacterised channels Pilot signaling and peak detection: Simple yet effective Awaiting prototype IC sponsored by MOSIS –0.8 mm 2 –21 pins –ETA: March Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

Feedback/questions Marius Goosen Carl & Emily Fuchs Institute for Microelectronics Dept.: Electrical, Electronic & Computer Engineering University of Pretoria Pretoria 0002 SOUTH AFRICA Tel: +27-(12) Acknowledgement The authors would like to thank ARMSCOR, the Armaments Corporation of South Africa Ltd, (Act 51 of 2003) for sponsoring this research study.