Recent TeV Observations of Blazars & Connections to GLAST Frank Krennrich Iowa State University VERITAS Collaboration GSFC, October 24, 2002 AGN.

Slides:



Advertisements
Similar presentations
VERITAS status Stephan LeBohec and Brian Humensky for the VERITAS collaboration Adelaide, December 2006.
Advertisements

A Multi - wavelength Study of Blazars with WIYN- VERITAS-IceCube Kirsten L. Larson The College of Wooster Advisor: Teresa Montaruli University of Madison-Wisconsin.
OBSERVATIONS OF AGNs USING PACT (Pachmarhi Array of Cherenkov Telescopes) Debanjan Bose (On behalf of PACT collaboration) “The Multi-Messenger Approach.
R. M. Wagner: AGN observations with MAGIC – p.1 R. M. W AGNER Max-Planck-Institut für Physik, München on behalf of the MAGIC C OLLABORATION AGN Observations.
Observations of the AGN 1ES with the MAGIC telescope The MAGIC Telescope 1ES Results from the observations Conclusion The MAGIC Telescope.
Mathieu de Naurois, H.E.S.S.High Energy Phenomena in the Galacic Center H.E.S.S. Observations of the Galactic Center  The H.E.S.S. Instrument.
MAGIC TeV blazars and Extragalactic Background Light Daniel Mazin on behalf of the MAGIC collaboration Max-Planck-Institut für Physik, Munich.
Abe Falcone (Penn State University)
TeV blazars and their distance E. Prandini, Padova University & INFN G. Bonnoli, L. Maraschi, M. Mariotti and F. Tavecchio Cosmic Radiation Fields - Sources.
Karsten Berger On behalf of the MAGIC Collaboration.
 Jim Hinton 2006 High Energy Stereoscopic System (H.E.S.S.)  Array of four 107 m 2 telescopes in Namibia, 120 m spacing  5° FOV  Threshold 100 GeV.
TeV Gamma-ray Astronomy and UHECR-1 Trevor C. Weekes, Whipple Observatory, Harvard-Smithsonian Center for Astrophysics.
Jamie Holder School of Physics and Astronomy, University of Leeds, U.K Increasing the Collection Area for IACTs at High Energies Future of Gamma Ray Astronomy.
Very High Energy Transient Extragalactic Sources: GRBs David A. Williams Santa Cruz Institute for Particle Physics University of California, Santa Cruz.
Gus Sinnis HAWC Review December 2007 Milagro a TeV Gamma-Ray Observatory Gus Sinnis Los Alamos National Laboratory.
Astrophysics around 100 GeV with STACEE David A. Williams University of California, Santa Cruz representing The STACEE Collaboration L.M.Boone, 1 D.Bramel,
The Transient Universe: AY 250 Spring 2007 New High Energy Telescopes Geoff Bower.
Julie McEnery1 GLAST: Multiwavelength Science with a New Mission Julie Mc Enery Gamma-ray Large Area Space Telescope.
HAWC Gus Sinnis VHE Workshop UCLA October, 2005 HAWC: A Next Generation Wide-Field VHE Gamma-Ray Telescope.
The Spectrum of Markarian 421 Above 100 GeV with STACEE Jennifer Carson UCLA / Stanford Linear Accelerator Center February MeV 1 GeV 10 GeV 100.
1 VERY ENERGETIC RADIATION IMAGING TELESCOPE ARRAY SYSTEM VERITAS Mark Lang, National University of Ireland, Galway.
On A Large Array Of Midsized Telescopes Stephen Fegan Vladimir Vassiliev UCLA.
Julie McEnery GLAST Science Lunch Milagro: A Wide Field of View Gamma-Ray Telescope Julie McEnery.
Multi-wavelength AGN spectra and modeling Paolo Giommi ASI.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
Astrophysics With the Cherenkov Telescope Array P. Coppi (for F. Aharonian, MPIK, Heidelberg)
Incontri di Fisica delle Alte Energie IFAE 2006 Pavia Vincenzo Vitale Recent Results in Gamma Ray Astronomy with IACTs.
Observations of 3C 279 with the MAGIC telescope M.Teshima 1, E.Prandini 2, M.Errando, D. Kranich 4, P.Majumdar 1, M.Mariotti 2 and V.Scalzotto 2 for the.
Gus Sinnis RICAP, Rome June 2007 High Altitude Water Cherenkov Telescope  Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration.
Milagro Gus Sinnis Milagro NSF Review July 18-19, 2005 Milagro: A Synoptic VHE Gamma-Ray Telescope Gus Sinnis Los Alamos National Laboratory.
Recent results from MAGIC Alessandro de Angelis Univ. Udine, INFN Trieste Bremen, July 2010 Alessandro de Angelis Univ. Udine, INFN Trieste Bremen, July.
Long-term monitor on Mrk 421 using ARGO-YBJ experiment S.Z Chen (IHEP/CAS/China, On behalf of the ARGO-YBJ collaboration  1. Introduction.
Moriond 2001Jordan GoodmanMilagro Collaboration The Milagro Gamma Ray Observatory The Physics of Milagro Milagrito –Mrk 501 –GRB a Milagro –Description.
The TeV Gamma-ray Universe Trevor C. Weekes Harvard-Smithsonian Center for Astrophysics Motivation/Techniques The TeV Sky Future Prospects.
Cosmology with Ground-Based Cherenkov Telescopes Wei Cui (Purdue University)
Frank Krennrich*, for the VERITAS Collaboration (*Iowa State University) Results from VERITAS Results from VERITAS New Opportunities at the interface.
7 March 2008Nicola Galante, DPG - Freiburg1 Observation of GRBs with the MAGIC Telescope Nicola Galante (MPI für Physik - München) for the MAGIC Collaboration.
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
CTA The next generation ultimate gamma ray observatory M. Teshima Max-Planck-Institute for Physics.
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut) for MAGIC collaboration MAGIC.
Tobias Jogler Max-Planck Institute for Physics Taup 2007 MAGIC Observations of the HMXB LS I in VHE gamma rays Tobias Jogler on behalf of the MAGIC.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
First Results from VERITAS David Hanna McGill University Montreal, Canada.
MAGIC Recent AGN Observations. The MAGIC Telescopes Located at La Palma, altitude 2 200m First telescope in operation since 2004 Stereoscopic system in.
MAGIC Results Alessandro De Angelis INFN, IST and University of Udine ECRS Lisboa, September 2006.
ICRC 2003 First Extragalctic Observations by H.E.S.S. Arache Djannati-Ataï (Collège de France) 1.
44 th Rencontres de Moriond - La Thuile, Valle d’Aosta, February 1-8, 2009 The MAGICextragalactic sky The MAGIC extragalactic sky Barbara De Lotto Università.
HAWC Science  Survey of 2  sr (half the sky) up to 100 TeV energies Probe knee in cosmic ray spectrum Identify sources of Galactic cosmic rays  Extended.
The Spectrum of Markarian 421 Above 100 GeV with STACEE
1st page of proposal with 2 pictures and institution list 1.
VERITAS Observations Of M 31 and some results about my recent work
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
Blazars: the gamma-ray view of AGILE on behalf of the AGILE WG-AGN Filippo D’Ammando Università degli Studi di Roma “Tor Vergata” INAF - Istituto di Astrofisica.
05/02/031 Next Generation Ground- based  -ray Telescopes Frank Krennrich April,
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
UPGRADE PLANS FOR VERITAS Ben Zitzer* for the VERITAS Collaboration *Argonne National Laboratory.
Introduction Active galactic nuclei (AGN) are among the most interesting sources of gamma-rays. At the highest energies, blazars are the most luminous.
Markarian 421 with MAGIC telescope Daniel Mazin for the MAGIC Collaboration Max-Planck-Institut für Physik, München
MAGIC Telescopes - Status and Results 2009/ Isabel Braun Institute for Particle Physics, ETH Zürich for the MAGIC collaboration CHIPP Plenary Meeting.
Jamie Holder Bartol Research Institute/Department of Physics and Astronomy University of Delaware VERITAS Contributions to CF6 Cosmic rays, Gamma-rays.
1 MAGIC Crab 10% Crab 1% Crab GLAST MAGIC HESS E. F(>E) [TeV/cm 2 s] E [GeV] Cycle 1 of data taking from Mar 2005 to Apr 2006 –~1200 hours, with efficiency.
Tobias Jogler Max – Planck Institut für Physik The MAGIC view of our Galaxy Tobias Jogler for the MAGIC Collaboration.
Igor Oya Vallejo UCM 1 MAGIC observations of Active Galactic Nuclei Igor Oya Vallejo UCM Madrid On behalf of MAGIC collaboration 1 VIII Reunión Científica.
MAGIC M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut)
Lecture 4 The TeV Sky Cherenkov light Sources of Cherenkov radiation.
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
Songzhan Chen Institute of High Energy Physics (IHEP) Nanjing
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut)
MAGIC and Multi-Wavelength Observations of Mrk 180 and 1ES in 2008
Presentation transcript:

Recent TeV Observations of Blazars & Connections to GLAST Frank Krennrich Iowa State University VERITAS Collaboration GSFC, October 24, 2002 AGN

VERITAS Collaboration: Frank Krennrich for the VERITAS collaboration Collaboration members: Iowa State U. Leeds U. (U.K.) McGill University (Canada) Purdue U. Smithsonian Astrophysical Observatory UCLA University College, Dublin (Ireland) U. of Chicago U. of Utah Washington U.

Outline Introduction  atmospheric Cherenkov imaging technique  brief overview of TeV blazars Astrophysics results with Whipple 10m telescope  Mrk /2001, Mrk spectra  H , 1ES Next generation instrument: VERITAS VERITAS – GLAST connection Summary

History of the Whipple 10m Imaging Camera 0.01 – 100 TeV Area ~ 100,000 m 2 E ~ 0.2 – 100 TeV  ~ 0.2 o 100 optical photons/m 2 TeV within a few ns

 -ray images: - narrow, short, smooth Hadronic images: - broad, long - local muons, patchy hadron rejection: 99.7% (10 -3 )  -ray proton Cosmic Ray Rejection Technique Crab Nebula 7  in 1hour Courtesy W.Hofmann

Science Highlights: Whipple 10m 1989 Discovery of TeV photons from the Crab 1992 TeV photons from the blazar Mrk 421 z = Flare of Mrk 501 z = Discovery of H (z = 0.129) 2001 Flare Mrk Weekes et al. 1989, ApJ, 342, 379 Punch et al. 1992, Nature, 358, 477 Gaidos et al. 1996, Nature, 383, 319 Catanese et al. 1997, ApJ, 487, L Giant & short flare from Mrk 421 Krennrich et al. 2002, ApJL, 575, L9 Krennrich et al. 2001, ApJL, 560, L45 ~10 Crab Horan et al. 2002, ApJ, 571, 753 Petry et al. 2002, ApJ, in press

> 70 “EGRET” blazars at 1 GeV Redshift z = 0.03 – 2.28 z H Mrk 421 Mrk 501 1ES ES C66 1ES TeV blazar “Whipple” blazars at 300 GeV Mrk Mrk ES ES H

PKS Search for new TeV Blazars: Mrk 501 Mrk 421 H ES ES Costamante, L. & Ghisellini, G. 2001, A&A, 384, 56

Mrk 421 z = X-ray BL Weak GeV > 86  TeV Mrk 501 z = X-ray BL Marginal GeV > 40  TeV

Multiwavelength spectra Peak: 100 keV/200 GeV X-ray/TeV correlation Mrk 501Mrk 421 Peak at 1 keV/~50 GeV X-ray/TeV correlation Catanese et al., ??? Catanese & Weekes, PASP, 111, (1999)

Mrk 421 in 2000/2001:  23,000  -rays at E> 300 GeV Courtesy of J. Holder (see also Holder et al., 2001, Proc. 27 th ICRC, Hamburg)

Mrk 421/Mrk 501 spectra Mrk 501 Mrk 421 dN/dE ~ E -   K  e –(E/ E )   with E 0 = 4.6 K 0.8 TeV  dN/dE ~ E -   K  e –(E/E )   with E 0 = 4.3 K 0.3 TeV  ( TeV ) syst  Samuelson et al. 1998, ApJL, 501, L17 Krennrich et al. 1999, ApJ, 511, 149 Krennrich et al. 2001, ApJL, 560, L45 0 0

Mrk 421  on average,  -ray luminosity peak shifts to larger energies with increasing flux! Krennrich, F. et al. 2002, ApJL, 575, L9

1997 vs. Mrk 421 high state Mrk average Mrk 421 high state (set I)  spectral index varies but cutoff region remains stable!  imagine instrument with 20 times the sensitivity of Whipple  separate constant from variable component  IR-background density

Mrk 421: spectral variability: Property of a specific blazar or emission mechanism? Krennrich et al. 1999, ApJ, 511, 149 Krennrich et al. 2002, ApJL, 575, L9 Fossati et al. 2000, ApJ, 541, 166 X-ray VHE-  -ray

½ Hourly Spectral Variability: Feb. 1 Feb. 2 Feb. 27 March 19 March 25March 27 P = 3.4 x P = 4.0 x P = 8.5 x 10 -4

½ Hourly Spectral Variability VERITAS collaboration (in preparation)

X-ray/TeV correlation: Mrk 421 preliminary TeV lightcurve & TeV spectral variation X-ray/TeV lightcurve Courtesy of G. Fossati, J. Buckley & M. Jordan preliminary VERITAS collaboration (in preparation)

H : weak signal ~ 80 mCrab from Horan et al. 2002, ApJ, 571, 753

H spectrum: Whipple 2001: dN/dE ~ E K 0.35 K 0.05  Petry et al. 2002, ApJ, in press HEGRA 2001: dN/dE ~ E K 0.6 K 0.05  Whipple+HEGRA: dN/dE ~ E K 0.27 K 0.05  Aharonian et al. 2002, A&A, 384, L23 Petry et al. 2002, ApJ, in press

2002 Flares from 1ES : IAU circular 7903 (VERITAS collaboration), 2002 Holder et al. 2002, in preparation

Conclusion from blazar observations Spectral cutoffs for Mrk 421/501 at ~ 4 TeV:  possible evidence for absorption from IR background  or due to internal break due to  KN  ~ E -1 (when  h soft > m e c 2 ) Spectral variability (Mrk 421):   -ray luminosity peak shifts with increase   -flux correlation holds over 5 years! Rapid variability (Mrk421):  t variability ~ 15 min.   ~ 10  emission region pc H :  first detection of blazar with z ~ at E >300 GeV  steep spectrum: dN/dE ~ E K 0.27 K 0.05 Future: source list steadily growing (5 Whipple blazars)  VERITAS

VERITAS: Very Energetic Radiation Imaging Telescope Array System 50 GeV – 50 TeV Area: = 100,000 m 2 (1 TeV) = 40,000 m 2 (300 GeV) = 1,000 m 2 (50 GeV) Angular res.: 0.03 o – 0.14 o Energy resolution: 10-18% Observation strategy: pointed exposures

Arrays of Imaging Telescopes I - 50 GeV – 50 TeV -  ~ 0.03 ~ Flux sensitivity: m VERITAS

DESIGN 7-telescope Array 12 m Reflectors 500 PMT Cameras 3.5 o FOV

TECHNICAL PROGRESS Telescope: mount, mirrors Camera: PMTs, amps Electronics: FADCs, trigger DAQ: High speed Readout & analysis

TELESCOPE Overall Optical Support Structure Accomodates 12m mirror Pedestal

CAMERA PMT Installation Camera Box Construction Cabling inside

FRONT-END Amplifiers PMT Assembly Current Monitoring

Point Source Sensitivity Cangaroo III HESS MAGIC Stacee VERITAS

GLAST/VERITAS cross-calibration: Crab Nebula Hillas et al., ApJ, 503, 744 (1998) GLAST VERITAS Overlap: 50 GeV – 100 GeV - 1 TeV GLAST:   E/E ~ 10 GeV –100 GeV VERITAS:  E/E ~ 50 GeV-1000 GeV 20-25% uncertainty in the absolute energy of IACTs!  fix with GLAST/VERITAS cross- calibration using overlap! GLAST (40 days exposure)  150 (10) photons above 10 (100) GeV  10% accuracy in absolute E

Connections: Unified AGN picture  ~ several 10 3 GeV blazars  blazar classification studies (GeV blazars) Jet models  broad studies daily-yearly flux variations EBL cutoff  probe 0.1  m – 0.01  m Blazar spectra  20 MeV – 100 GeV Unified AGN picture  ~ 10 2 sub-TeV blazars  classification studies (extreme blazars) Jet models  detailed studies min. - yearly spectral variations EBL cutoff  probe 0.1  m – 50  m Blazar spectra  50 GeV – 50 TeV GLAST