Manual Interpretation of EEGs: A Machine Learning Perspective Christian Ward, Dr. Iyad Obeid and Dr. Joseph Picone Neural Engineering Data Consortium College.

Slides:



Advertisements
Similar presentations
Senior Consultant Neurologist Singapore General Hospital
Advertisements

Definition of Terms Seizure Epileptic Seizure Epilepsy
Diagnostic Work-up. Electroencephalography (EEG) The only diagnostic test for absence seizures Ambulatory EEG monitoring over 24 hours may be useful to.
EEG and ECG machines.
M. Tabrizi: Seizure Detection May, A COMPARATIVE ANALYSIS OF NONLINEAR FEATURES FOR AN HMM-BASED SEIZURE DETECTION SYSTEM Masih Tabrizi and Joseph.
By: Mazen Al-Hakim, M.D. Seizure mimics.
Abstract Electrical activity in the cortex can be recorded by surface electrodes. Electro Encephalography (EEG) machine records potential difference between.
Manual Interpretation of EEGs: A Machine Learning Perspective Christian Ward, Dr. Iyad Obeid and Dr. Joseph Picone Neural Engineering Data Consortium College.
Picture 2. Electrode artifact at O1. The morphology is very unusual for any cerebral waveform, and the distribution is limited to a single electrode.
Northeast Regional Epilepsy Group Christos Lambrakis M.D. 1.
Abnormal EEG brain in neurological disease
For Neurology Residents
Electroencephalography
Take the Survey! Big data needs? How could membership benefit you? Automatic Interpretation of EEGs Statistics Acknowledgements DARPA/MTO (D13AP00065)
Corpus Development EEG signal files and reports had to be manually paired, de-identified and annotated: Corpus Development EEG signal files and reports.
Non-Epileptiform Patterns
1. Electroencephalography Definition - EEG is a surface recording of the electrical activity of nerve cells of the brain - Electrode placement (10 / 20.
EEG findings in patients with Neurological Disorders Instructor: Dr. Gharibzadeh By: Fahime Sheikhzadeh.
THE TUH EEG CORPUS: A Big Data Resource for Automated EEG Interpretation A. Harati, S. López, I. Obeid and J. Picone Neural Engineering Data Consortium.
นพ.รังสรรค์ ชัยเสวิกุล
Abstract EEGs, which record electrical activity on the scalp using an array of electrodes, are routinely used in clinical settings to.
Automatic Labeling of EEGs Using Deep Learning M. Golmohammadi, A. Harati, S. Lopez I. Obeid and J. Picone Neural Engineering Data Consortium College of.
Data Processing Machine Learning Algorithm The data is processed by machine algorithms based on hidden Markov models and deep learning. They are then utilized.
G is for generalized Activity that affects the brain as a whole, or is present in every channel of the EEG. Also can use the word diffuse.
Abstract The emergence of big data and deep learning is enabling the ability to automatically learn how to interpret EEGs from a big data archive. The.
Acknowledgements This research was also supported by the Brazil Scientific Mobility Program (BSMP) and the Institute of International Education (IIE).
Recording the Electroencephalogram (EEG). Recording the EEG.
Views The architecture was specifically changed to accommodate multiple views. The used of the QStackedWidget makes it easy to switch between the different.
THE TUH EEG CORPUS: The Largest Open Source Clinical EEG Corpus Iyad Obeid and Joseph Picone Neural Engineering Data Consortium Temple University Philadelphia,
THE TUH EEG CORPUS: A Big Data Resource for Automated EEG Interpretation A. Harati, S. López, I. Obeid and J. Picone Neural Engineering Data Consortium.
Quick EEG facts Physicians use the EEG to aid in the diagnosis of : epilepsy, cerebral tumors, encephalitis, and stroke EEG usage was first documented.
Data Acquisition An EEG measurement represents a difference between the voltages at two electrodes. The signal is usually displayed using a montage which.
The Goal Use computers to aid physicians in diagnosis of neurological diseases, particularly epilepsy Detect pathological events in real time Currently,
TUH EEG Corpus Data Analysis 38,437 files from the Corpus were analyzed. 3,738 of these EEGs do not contain the proper channel assignments specified in.
March 2012 Teneille E. Gofton
Big Mechanism for Processing EEG Clinical Information on Big Data Aim 1: Automatically Recognize and Time-Align Events in EEG Signals Aim 2: Automatically.
Automatic Discovery and Processing of EEG Cohorts from Clinical Records Mission: Enable comparative research by automatically uncovering clinical knowledge.
Automated Interpretation of EEGs: Integrating Temporal and Spectral Modeling Christian Ward, Dr. Iyad Obeid and Dr. Joseph Picone Neural Engineering Data.
Medical Aspects of our EEG Work D. Jungreis. Body Planes Note that this body is in standard anatomical position!
Abstract Automatic detection of sleep state is important to enhance the quick diagnostic of sleep conditions. The analysis of EEGs is a difficult time-consuming.
Demonstration A Python-based user interface: Waveform and spectrogram views are supported. User-configurable montages and filtering. Scrolling by time.
Classic EEG Abnormalities Academic Half-Day June 5th 2013.
Market: Customer Survey: 57 clinicians from academic medical centers and community hospitals, and 44 industry professionals. Primary Customer Need: 70%
Data Analysis Generation of the corpus statistics was accomplished through the analysis of information contained in the EDF headers. Figure 4 shows some.
Views The architecture was specifically changed to accommodate multiple views. The used of the QStackedWidget makes it easy to switch between the different.
Abstract Automatic detection of sleep state is an important queue in accurate detection of sleep conditions. The analysis of EEGs is a difficult time-consuming.
MIND CONTROLLED ROBOT BY ADITHYA KUMAR EIGHTH GRADE.
Date of download: 6/28/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Similarity of Lateralized Rhythmic Delta Activity.
PHYSIOLOGY LAB EEG I. The cerebral cortex is composed of nerve cells, many of which are functionally connected to each other, and connected to other parts.
Constructing Multiple Views The architecture of the window was altered to accommodate switching between waveform, spectrogram, energy, and all combinations.
Constructing Multiple Views The architecture of the window was altered to accommodate switching between waveform, spectrogram, energy, and all combinations.
Scalable EEG interpretation using Deep Learning and Schema Descriptors
A. “10-20” is a measurement system designed to reliably reproduce electrode positions on different patients, regardless of head size. Electrodes are placed.
CLASSIFICATION OF SLEEP EVENTS IN EEG’S USING HIDDEN MARKOV MODELS
G. Suarez, J. Soares, S. Lopez, I. Obeid and J. Picone
Enhanced Visualizations for Improved Real-Time EEG Monitoring
THE TUH EEG SEIZURE CORPUS
Enhanced Visualizations for Improved Real-Time EEG Monitoring
Development of chronic epilepsy after recurrent episodes of Posterior Reversible Encephalopathy Syndrome associated with Periodic Lateralized Epileptiform.
N. Capp, E. Krome, I. Obeid and J. Picone
Optimizing Channel Selection for Seizure Detection
EEG Recognition Using The Kaldi Speech Recognition Toolkit
Big Data Resources for EEGs: Enabling Deep Learning Research
E. von Weltin, T. Ahsan, V. Shah, D. Jamshed, M. Golmohammadi, I
Automatic Interpretation of EEGs for Clinical Decision Support
feature extraction methods for EEG EVENT DETECTION
Northeast Regional Epilepsy Group Christos Lambrakis M.D.
Machine Learning for Visual Scene Classification with EEG Data
A Dissertation Proposal by: Vinit Shah
EEG Event Classification Using Deep Learning
Presentation transcript:

Manual Interpretation of EEGs: A Machine Learning Perspective Christian Ward, Dr. Iyad Obeid and Dr. Joseph Picone Neural Engineering Data Consortium College of Engineering Temple University Philadelphia, Pennsylvania, USA

NEDC TutorialNovember 8, Abstract The goal of this presentation is to describe, from a machine learning perspective, how an electroencephalogram (EEG) is manually interpreted. This presentation is not meant to be a comprehensive tutorial on diagnosing illnesses from EEG data. Instead, it attempts to document what physicians look for in the signals, and to describe these in terms that can be translated into signal processing and machine learning code. An extracranial EEG measures brain function indirectly through electrodes placed in an array on the scalp. Events of interest to physicians originate as nerve impulses deep in the brain. By the time these signals reach the scalp they are heavily filtered and spatially dispersed. Interpreting the underlying pathology or determining the diagnosis is an art because (1) the transduced signals at the scalp are very noisy due to their relatively low voltage (microvolts) and (2) the artifacts in the waveform that correlate with a pathology are context dependent (knowledge of the surrounding behavior is important). In this presentation, we review what diseases are diagnosed using EEGs, what artifacts are used to identify these diseases, and what properties of the signal correlate with these artifacts. Both time domain (e.g., waveform shapes) and frequency domain behavior (e.g., fundamental frequency) play an important role in identifying these artifacts.

NEDC TutorialNovember 8, A technician administers a 30−minute recording session. An EEG specialist (neurologist) interprets the EEG. An EEG report is generated with the diagnosis. Patient is billed once the report is coded and signed off. Manual Interpretation of EEGs

NEDC TutorialNovember 8, positions are defined as potential electrode locations: 24 to 36 channels are commonly used; 64 and 128-channel EEGs are used in research 10/20 configuration (black): yields 19 channels plus several reference channels (typically the ears and forehead) 10/10 configuration (gray): typically doubles the number of channels Differential voltages are typically measured between a sensor and an ear (e.g., F3-T9) Common reference points include the ears (T9 and T10), the nose (e.g., ???) and the heart/respiratory system (e.g., EKG1 and EKG2) Signal Transduction

NEDC TutorialNovember 8, Baseline EEG: 10/20 Configuration In a 10/20 configuration, 21 channels are included in a typical EDF file. The channel labels shown to the right are what appear in the EDF file as channel labels. EEGs with more electrodes add additional channels. However, these 21 channels are typically the first 21 channels in the file. The TUH EEG Corpus contains data collected with a minimum of 24 channels (21 signals plus three annotation channels) and 36 channels. Our baseline experiments focus only on the first 21 channels.

NEDC TutorialNovember 8, Epilepsy: a neurological disorder marked by sudden recurrent episodes of sensory disturbance, loss of consciousness, or convulsions. Stroke: a sudden disabling attack or loss of consciousness caused by an interruption in the flow of blood to the brain. Posterior Reversible Encephalopathy Syndrome (PRES): characterized by headache, confusion, seizures and visual loss. It may occur due to a number of causes, predominantly malignant hypertension, eclampsia and some medical treatments. Middle Cerebral Artery (MCA) Infarct: obstruction of one of the three major paired arteries that supply blood to the cerebrum. Other uses of EEGs include diagnosis of Alzheimer's disease, certain psychoses, and sleep disorders (narcolepsy). The EEG may also be used to determine the overall electrical activity of the brain, which is used to evaluate trauma, drug intoxication, or brain damage. The EEG may also be used to monitor blood flow in the brain during surgical procedures. The EEG cannot be used to measure intelligence Common Diseases Diagnosed With An EEG

NEDC TutorialNovember 8, Background: models all other artifacts not included in the above categories. Though there are some variations in these signals for infants whose brains are not fully developed, the basic composition of these signals is relatively age and subject invariant. Spike and Wave: … describe… … ………………… GPED Triphasic: … describe … … PLED: … describe … … Eye Blink: … describe why …… … Most Significant Primitives

NEDC TutorialNovember 8, Other Primitives NameAcronymDefinition Electrographic SeizureN/ARhythmic discharge or spike and wave pattern with definite evolution in frequency, location or morphology lasting at least 10 sec Periodic Epileptiform dischargesPEDRepetitive sharp waves, spikes, or sharply contoured waves at regular or nearly regular intervals and without clear evolution in frequency or location Perioidic Lateralized Epileptiform discharges PLEDConsistently lateralized PED Generalized PEDGPEDBilateral and synchronous PED with no consistent lateralization Bilateral PLEDBiPLEDPLED occurring bilaterally, but independently and sychronously Triphasic WavesN/AGeneralized periodic sharp waves or sharply contoured delta waves with triphasic morphology, at 1-3 Hz, with/without anterior-posterior or posterior-anterior lag Frontal Intermittent Rhythmic Delta Activity FIRDAModerate- to high-voltage monorhythmic and sinusoidal 1- 3 Hz activity seen bilaterally, maximal in anterior leads, no evolution

NEDC TutorialNovember 8, Classification of Diseases NamePrimary Marker(s) Secondary Marker(s) Epilepsy Stroke PRES MCA Infarct

NEDC TutorialNovember 8, Summary and Future Work Summary: Deep… For… NEDC… Future Work: Three… Two…

NEDC TutorialNovember 8, Brief Bibliography of Relevant Documentation [1]Tatum, W., Husain, A., Benbadis, S., & Kaplan, P. (2007). Handbook of EEG Interpretation. (Kirsch, Ed.) (p. 276). New York City, New York, USA: Demos Medical Publishing. [2]Wulsin, D. F., Gupta, J. R., Mani, R., Blanco, J. A., & Litt, B. (2011). Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement. Journal of Neural Engineering, 8(3), [3]Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage, 34(4), 1600–1611. [4]Pavlick, E. (2013). EEG Simulation. School of Engineering and Applied Sciences, University of Pennsylvania. Retrieved November 21, 2013, from [5]Claassen, J., Mayer, S. A., Kowalski, R. G., Emerson, R. G., & Hirsch, L. J. (2004). Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology, 62(10), 1743–1748.