NMR study on bismuth oxide superconductor BaPb x Bi 1-x O 3 H. Matsuura and K. Miyake, J. Phys. Soc. Jpn. 81 (2012) 113705 Kitaoka Lab. Takashi MATSUMURA.

Slides:



Advertisements
Similar presentations
Superconductivity in Ba1-XKXBiO3(BKBO)
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Fast Nuclear Spin Hyperpolarization of Phosphorus in Silicon E. Sorte, W. Baker, D.R. McCamey, G. Laicher, C. Boehme, B. Saam Department of Physics, University.
NMR Studies of Metal-Insulator Transitions Leo Lamontagne MATRL286K December 10 th, 2014.
Electron Spin Resonance (ESR) Spectroscopy
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
Concepts in High Temperature Superconductivity
Chapter Menu Ionic Compounds and Metals Section 7.1Section 7.1Ion Formation Section 7.2Section 7.2 Ionic Bonds and Ionic Compounds Section 7.3Section.
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
Electronic structure of La2-xSrxCuO4 calculated by the
Superconductivity in Zigzag CuO Chains
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Physics 440 Condensed Matter Physics a.k.a. Materials Physics Solid-State Physics.
High Temperature Superconductivity: The Secret Life of Electrons in Cuprate Oxides.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Semiconductors n D*n If T>0
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
Applications of Normal Modes Physics 213 Lecture 20.
The Three Hallmarks of Superconductivity
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
© AS Jul-12. Electronegativity = the power of an atom to attract the electrons in a covalent bond.
Starter For each ion, draw a dot-and-cross diagram and predict the shape and bond angles. H3O+ NH2-
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
Introduction to bonding. Group 1 Li Na K Rb Cs Fr Group 2 Be Mg Ca Sr Ba Ra Group 7 F Cl Br I At All elements in the same group have the same number of.
CH. 2 atomic models electronic configuration oxidation numbers
How does Superconductivity Work? Thomas A. Maier.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Periodic Table.1. The Periodic Table-Key Questions What is the periodic table ? What information does the table provide ? ? How can one use the periodic.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Ions Wednesday January 8, 2014
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
An Introduction to Fe-based superconductors
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Magnetic states of lightly hole- doped cuprates in the clean limit as seen via zero-field muon spin spectroscopy Kitaoka Lab Kaneda Takuya F. Coneri, S.
Superconducting properties in filled-skutterudite PrOs4Sb12
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
PPT - Forming Ionic Compounds
Strontium Ruthenate Rachel Wooten Solid State II Elbio Dagotto
Chapter 6 Solid-State Chemistry. Problems n n 6.9, 6.13, 6.14.
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
Superconducting Cobaltites Nick Vence. Definition A material which looses its electrical resistivity below a certain temperature (Tc)is said to be superconducting.
Materials 286K Class 10, Oxide superconductors Li 1–x Ti 2+x O 4 Johnston, Prakash, Zachariasen, Viswanathan, MRS Bulletin 8 (1973)
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Superconductivity and magnetism in iron-based superconductor
Polarization enhanced NQR detection at low frequencies EUROMAR 2008, Saint Petersburg, Russia, 6-11 July 2008 Janko Luznik Institute of Mathematics, Physics.
Materials Issues in Correlated Superconductivity G. Kotliar Rutgers University Work done in collaboration with Z. Yin, A. Kutepov, K. Haule, R. Nourafkan.
Magnetism of the regular and excess iron in Fe1+xTe
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
Introduction to Semiconductors CSE251. Atomic Theory Consists of Electron, proton, neutron Electron revolve around nucleus in specific orbitals/shells.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
1.7 Trends in the Periodic Table
Chapter 6: Chemical Bonding
Periodic trends.
Hyperfine interaction studies in Manganites
Ionization Energy Atomic Radius Electron Affinity Electronegativity
Superconductivity in Bismuth Oxide Compounds
Bonding & Forming Compounds.
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
CHAPTER 2: BONDING AND PROPERTIES
Halogens Group 17 Seven valence electrons -1 charge Very reactive
Presentation transcript:

NMR study on bismuth oxide superconductor BaPb x Bi 1-x O 3 H. Matsuura and K. Miyake, J. Phys. Soc. Jpn. 81 (2012) Kitaoka Lab. Takashi MATSUMURA K.Kumagai.et,al Physica C 274 (1997)

Contents Introduction NMR,NQR Result 137 Ba spectrum 137 Ba ・ 135 Ba T 1 Summary

T C max~30K Ba 1-X K X BiO spin Spin + orbital phonon BaPb X Bi 1-X O 3 T c max~12K 1975 History of Superconductors Introduction Valence skipper?

O (1s) 2 (2s) 2 (2p) 4 O 2- (1s) 2 (2s) 2 (2p) 6 Bi [Xe](4f) 14 (5d) 10 (6s) 2 (6p) 3 Bi 3+ Bi 5+ [Xe](4f) 14 (5d) 10 (6s) 2 (6p) 0 [Xe](4f) 14 (5d) 10 (6s) 0 (6p) 0 Skipping (ns) 1 state Valence skipper 結晶化学入門 遠藤忠 他 講談社サイエンティフィック、 wikipedia Valence skipper Introduction Anion Cation closed-shell structure stable structure Bi 4+ [Xe](4f) 14 (5d) 10 (6s) 1 (6p) 0 unstable structure

Negative U Introduction 6s 0 6s 1 6s 2 U S : Coulomb interaction Attraction U S <0

Candidates for Valence skipper SC Introduction Valence skipping effect? Nb 1-x Ta x Se 3 (Nb 3+,Nb 5+ ) AgSnSe 2 (Sn 2+,Sn 4+ ) Pb 1-x Tl x Te (Tl 1+,Tl 3+ ) BKBO,BPBO (Bi 3+,Bi 5+ ) ・・・・・・ ・・・・・・

Mother compound BaBiO 3 Perovskite structure BaPb x Bi 1-x O 3 Different valence Bi

Mother compound BaBiO 3 / BaPb x Bi 1-x O 3

Superconductivity of BaPb x Bi 1-x O 3 BaPb x Bi 1-x O 3 sc BaBiO 3 Bi [Xe](4f) 14 (5d) 10 (6s) 2 (6p) 3 Pb [Xe](4f) 14 (5d) 10 (6s) 2 (6p) 2 Hole doping BaPb 0.5 Bi 0.5 O 3 BaPbO 3 Hole doping CDW state

Samples sc Hole doping BaPb x Bi 1-x O 3 x=0.64 Semiconductor x=0.75 Superconductor x=0.91 Metallic BaBiO 3 CDW state BaPb x Bi 1-x O 3

Ex. I=1/2 I=1/2 H0=0H0=0 H 0 ≠0 m=+1/2 m=-1/2  ℏ H 0 Zeemann splitting ω=  H 0 NMR (Nuclear Magnetic Resonance) 核磁気共鳴 γ (gyromagnetic ratio) 磁気回転比 Nuclear Magnetic Resonance NMR,NQR NMR Intensity [a.u.] Frequency,H 0 ω,H 0

NMR,NQR NQR Intensity [a.u.] Frequency Nuclear Quadrupole Resonance Ex. Ba I=3/ m=±1/2 m=±3/2 hν Q quadrupole interaction

137 Ba NQR Spectrum of x=0.91: Metallic (T=1.6K) Spectrum

Nuclear Magnetic Resonance Ex. Ba I=3/2 NMR,NQR NMR Intensity ω EFG: 電荷分布 Real, broadening Ideal Real, broadening Ideal ω

Mother compound BaBiO 3 Perovskite structure BaPb x Bi 1-x O 3 Rotation

Ba site: tetragonal Spectrum (1,0,0) V XX V ZZ V YY

Spectrum Ba site: orthorhombic Crystal structure  Spectrum shape

137 Ba NMR Spectrum of x=0.91: Metallic x=0.91 Metallic Spectrum 20K One component tetragonal

137 Ba NQR Spectrum of x=0.64: Semiconductor (T=1.6K) Spectrum

137 Ba NMR Spectrum of x=0.64: Semiconductor 40% 60% + Spectrum 20K Two components tetragonal orthorhombic

Two components 30% 70% Ba NMR Spectrum of x=0.75: Superconductor Spectrum 20K tetragonal orthorhombic

Tetragonal phase x=0.91 Metallic x=0.64 Semiconductor x=0.75 Superconductor Tetragonal phase + Orthorhombic distortion Tetragonal phase + Orthorhombic distortion Spectrum T<350K Whole temperature Tetra Ortho

m=+1/2 m=-1/2 H0H0 time t M M(t) = M(∞)[1- exp(-t/T 1 )] Thermal equilibrium state M = M ( ∞ ) Relaxation M = M ( t ) Exited state M = M(0) = 0 t < 0t = 0t > 0 0 Ex. I=1/2 Ba T 1 Electronic spin, etc. Nuclear magnetic relaxation rate (T 1 -1 )

Ba T Ba/ 135 Ba-NMR T 1Q -1 T 1M -1 Valence skipping fluctuation? T 1 -1 =T 1M -1 +T 1Q -1 Nuclear magnetic relaxation rate (T 1 -1 )

x=0.91 Metallic x=0.75 Superconductor x=0.64 Semiconductor Ba T 1 small large EaEa

Samples sc Hole doping BaPb x Bi 1-x O 3 x=0.64 Semiconductor x=0.75 Superconductor x=0.91 Metallic BaBiO 3 CDWCDW fluctuation small large CDW fluctuation? Ba T 1

Pair hopping Bi Pb BaPb x Bi 1-x O 3 x=0.75 Pair hopping

Bi (6S) state Pair hopping BaPb x Bi 1-x O 3 x=0.75 Pair hopping

Bi (6S) state Pair hopping BaPb x Bi 1-x O 3 x=0.75 Negative U Pair hopping

Summary Superconductivity and a change of the structure are in a close relation. Nuclear relaxation mechanism was determined by charge fluctuations. The superconductivity in BPBO may be mediated by the valence skipping effect.