PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka PALM – model equations.

Slides:



Advertisements
Similar presentations
Stable Fluids A paper by Jos Stam.
Advertisements

Parameterization of orographic related momentum
Introduction Irina Surface layer and surface fluxes Anton
Jörg Uhlenbrock Universität Hannover Institut für Meteorologie und Klimatologie PALM-Seminar How to work with the user-interface-routine in.
Subgrid-Scale Models – an Overview
Institut für Meteorologie und Klimatologie Universität Hannover
Universität Hannover Institut für Meteorologie und Klimatologie Zingst PALM-Seminar July 2004 How to work with the user-interface-routine in PALM Contents:
Section 2: The Planetary Boundary Layer
Conservation Equations
CHAPTER 2 DIFFERENTIAL FORMULATION OF THE BASIC LAWS 2.1 Introduction  Solutions must satisfy 3 fundamental laws: conservation of mass conservation of.
Turbulent Models.  DNS – Direct Numerical Simulation ◦ Solve the equations exactly ◦ Possible with today’s supercomputers ◦ Upside – very accurate if.
Direct numerical simulation study of a turbulent stably stratified air flow above the wavy water surface. O. A. Druzhinin, Y. I. Troitskaya Institute of.
Tor Håkon Sivertsen Bioforsk Plant Health and Plant Protection, Hogskoleveien 7, N ‑ 1432 Aas (Norway); Discussing the concept.
0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is.
Introduction to surface ocean modelling SOPRAN GOTM School Warnemünde: Hans Burchard Baltic Sea Research Institute Warnemünde, Germany.
Wolfgang Kinzelbach with Marc Wolf and Cornel Beffa
Geophysical Modelling: Climate Modelling How advection, diffusion, choice of grids, timesteps etc are defined in state of the art models.
CHE/ME 109 Heat Transfer in Electronics
Atmospheric turbulence Richard Perkins Laboratoire de Mécanique des Fluides et d’Acoustique Université de Lyon CNRS – EC Lyon – INSA Lyon – UCBL 36, avenue.
LES of Turbulent Flows: Lecture 3 (ME EN )
Numerical Hydraulics Wolfgang Kinzelbach with Marc Wolf and Cornel Beffa Lecture 1: The equations.
Fluid Dynamics: Boundary Layers
FUNDAMENTAL EQUATIONS, CONCEPTS AND IMPLEMENTATION
Introduction to Numerical Weather Prediction 4 September 2012.
Conservation Laws for Continua
CFD Modeling of Turbulent Flows
ASSIMILATION OF GOES-DERIVED CLOUD PRODUCTS IN MM5.
Lecture Objectives: -Define turbulence –Solve turbulent flow example –Define average and instantaneous velocities -Define Reynolds Averaged Navier Stokes.
Basic dynamics  The equations of motion and continuity Scaling Hydrostatic relation Boussinesq approximation  Geostrophic balance in ocean’s interior.
Physics of Convection " Motivation: Convection is the engine that turns heat into motion. " Examples from Meteorology, Oceanography and Solid Earth Geophysics.
Governing equations: Navier-Stokes equations, Two-dimensional shallow-water equations, Saint-Venant equations, compressible water hammer flow equations.
1 LES of Turbulent Flows: Lecture 6 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
Momentum Equations in a Fluid (PD) Pressure difference (Co) Coriolis Force (Fr) Friction Total Force acting on a body = mass times its acceleration (W)
Towards a evaluation of a tensor eddy-diffusivity model for the terra incognita grey gray zone Omduth Coceal 1, Mary-Jane Bopape 2, Robert S. Plant 2 1.
Budgets of second order moments for cloudy boundary layers 1 Systematische Untersuchung höherer statistischer Momente und ihrer Bilanzen 1 LES der atmosphärischen.
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS FILTERING OF EQUATIONS OF MOTION FOR ATMOSPHERE (CONT) LECTURE 7 (Reference: Peixoto & Oort, Chapter 3,7)
Rho-Taek Jung Date Title 2 June MEC Ocean Model Introduction, Hydrostatic Model, Full-3D Model, Eddy Viscosity, Boundary Condition 9 June Exercise1: MEC.
Richard Rotunno National Center for Atmospheric Research, USA Fluid Dynamics for Coastal Meteorology.
A canopy model of mean winds through urban areas O. COCEAL and S. E. BELCHER University of Reading, UK.
Some Aspects of Parameterisation in Small Scaled Models Thomas Roschke German Weather Service Department of Aviation Meteorology.
Fluid dynamical equations (Navier-Stokes equations)
Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.
Matthias Raschendorfer DWD Recent extensions of the COSMO TKE scheme related to the interaction with non turbulent scales COSMO Offenbach 2009 Matthias.
FREE CONVECTION 7.1 Introduction Solar collectors Pipes Ducts Electronic packages Walls and windows 7.2 Features and Parameters of Free Convection (1)
Quantification of the Infection & its Effect on Mean Fow.... P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Modeling of Turbulent.
AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
Reynolds Analogy It can be shown that, under specific conditions (no external pressure gradient and Prandtle number equals to one), the momentum and heat.
INTRODUCTION TO CONVECTION
Basic dynamics ●The equations of motion and continuity Scaling Hydrostatic relation Boussinesq approximation ●Geostrophic balance in ocean’s interior.
Basic dynamics The equation of motion Scale Analysis
Scales of Motion, Reynolds averaging September 22.
Computational Modeling of 3D Turbulent Flows With MC2 Claude Pelletier Environment Canada MSC / MRB.
1 LES of Turbulent Flows: Lecture 7 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
Direct numerical simulation has to solve all the turbulence scales from the large eddies down to the smallest Kolmogorov scales. They are based on a three-dimensional.
1 LES of Turbulent Flows: Lecture 9 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
Modelling of Marine Systems. Shallow waters Equations.
A revised formulation of the COSMO surface-to-atmosphere transfer scheme Matthias Raschendorfer COSMO Offenbach 2009 Matthias Raschendorfer.
The Standard, RNG, and Realizable k- Models. The major differences in the models are as follows: the method of calculating turbulent viscosity the turbulent.
Meteorological Variables 1. Local right-hand Cartesian coordinate 2. Polar coordinate x y U V W O O East North Up Dynamic variable: Wind.
Chapter 6: Introduction to Convection
Objective Introduce Reynolds Navier Stokes Equations (RANS)
Introduction to the Turbulence Models
Numerical Investigation of Turbulent Flows Using k-epsilon
Boris Galperin Univ. South Florida
FLUID DYNAMICS Made By: Prajapati Dharmesh Jyantibhai ( )
Hydrodynamics of slowly miscible liquids
Conservation of momentum
Characteristics of Turbulence:
Introduction to Fluid Dynamics & Applications
Conservation of momentum
Presentation transcript:

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka PALM – model equations Palm-Seminar Zingst July 2004 Micha Gryschka Institut für Meteorologie und Klimatologie Universität Hannover

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka Structure Basic equations Boussinesq-approximation and filtering poisson equation for pressure Prandtl-layer how Cloud physics is imbedded

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka Symbols velocity components spatial coordinates potential temperature passive scalar actual temperature pressure density geopotential height Coriolis parameter alternating symbol molecular diffusivity sources or sinks

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka Basic equations 1.Navier-stokes equations 3.continuity equation 2.First principle of thermodynamics and equation for any passive scalar ψ Variety of solutions some solutions are not importent for meteorological questions some solutions cost a lot computer power (f.e. sonic waves decrease the timestep) meteorological meaningfull simplifications

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka Boussinesq-approximation (I)

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka in the horizontal components: terms with * are negligible in the vertikal component: term g * / 0 is not neglibible replacing Boussinesq-approximation (II) in case of shallow convection! incrompressible (divergence free) flow (no solution for acustic waves)

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka Are the equations directly solveable? Numerical solving of the equations implies discrete solving on a grid If the grid is small enough, the equations could be discretized directly In LES the grid is not small enough Equations have to be filtered: –large structures, resolved from the grid (and timestep) –small structures, unresolved from the grid (and timestep)

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka Filtering the equations (I) Splitting the variables into mean part ( ¯ ) and deviation ( ) By filtering, a turbulent diffusion term comes into being subgrid-scale (SGS) stress tensor

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka Filtering the equations (II) The SGS stress tensor is splitted into an isotropic and an anisotropic part: anisotropic SGS stress tensor

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka The filtered equations 1.Boussinesq-approximated Reynolds equations for incompressible flows 3.continuity equation for incompressible flows 2.First principle of thermodynamics and equation for any passive scalar : has to be parametrized

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka 1.Calculating a preliminary velocity field without considering the pressure term 2.Solving the poisson equation 3.Correcting the velocitiy field with considering the pressure term The Poisson-equation (I) This strategy connects the continuity equation with the motion equations, so it's guaranteed that the flow is divergence free. Solving the poisson equation is one of the most costs of computer power! After filtering and parametrizing, only the pressure is unknown. Solution: considering the continuity equation

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka The Poisson-equation (II) origin of the poisson equation:

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka The Prandtl-layer (I) Φ m and Φ h : Dyer-Businger functions friction velocity characteristic temperature in the Prandtl-layer between ground and first grid layer

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka The Prandtl-layer (II) Richardson flux number Dyer-Businger functions for momentum and heat stable stratification neutral stratification unstable stratification stable stratification neutral stratification unstable stratification

PALM model equations Universität Hannover Institut für Meteorologie und Klimatologie, Palm-Seminar Zingst July 2004, Micha Gryschka how Cloud Physics is imbedded prognostic equation for u i connection of dynamics and cloud physics via temperature v ( q v, q l, l ) prognostic equation for l sources and sinks: ( t l ) rad, ( t l ) prec prognostic equation for q sources and sinks: ( t q) prec q v = q - q l cloud physics model